Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T23:16:01.115Z Has data issue: false hasContentIssue false

Characterization of Thin PtSI/p-Si Schottky Diodes

Published online by Cambridge University Press:  26 February 2011

J. Silverman
Affiliation:
Rome Air Development Center, Hanscom AFB, MA 01731
P. Pellegrini
Affiliation:
Rome Air Development Center, Hanscom AFB, MA 01731
J. Comer
Affiliation:
Rome Air Development Center, Hanscom AFB, MA 01731
A. Golvbovic
Affiliation:
Rome Air Development Center, Hanscom AFB, MA 01731
M. Weeks
Affiliation:
Rome Air Development Center, Hanscom AFB, MA 01731
J. Mooney
Affiliation:
Rome Air Development Center, Hanscom AFB, MA 01731
J. Fitzgerald
Affiliation:
Rome Air Development Center, Hanscom AFB, MA 01731
Get access

Abstract

A series of PtSi on p-type Si diodes have been characterized in order to establish correlations among processing parameters, metallurgical features and electrical properties. Characterization techniques include analytical (TED, TEM), electrical (current-voltage characteristics), and optical (photoemission and absorption). The fabrication techniques involve e-beam evaporation of platinum layers at UHV levels onto VLSI grade (100) p-type silicon substrates. The silicide layers are formed via sub-eutectic solid state diffusion at 350°C. The main trends with thickness as well as possible interrelationships are described. An unexpected result is the presence of unreacted polycrystalline Pt and Pt2Si at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pellegrini, P. W. and Shepherd, F. D., Proc. SPIE Conf. 409, 66 (1983).Google Scholar
2. Ghozlene, H. B. and Beaufrere, P., J. Appl. Phys. ^ 9, 3998 (1978).Google Scholar
3. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, New York, 1981), p. 279.Google Scholar
4. Capone, B. R., Taylor, R. W., Kosonocky, W. F., Opt. Eng. 21, 945 (1982).Google Scholar
5. Vickers, V. E., Appl. Opt. 10, 2190 (1971).Google Scholar
6. Dalai, V. L., J. Appl. Phys. 42, 2274, (1971).Google Scholar
7. Mooney, J. M. and Silverman, J., IEEE Trans. Elec. Dev. ED–32, 33 (1985).Google Scholar
8. Mooney, J. M. and Silverman, J., to be published.Google Scholar
9. Mooney, J. M., PhD thesis, University of Arizona, 1986.Google Scholar
10. Crider, C. A., Poate, J. M., Rowe, J. E., Sheng, T. T., J. Appl. Phys. 52, 2860 (1981).Google Scholar
11. Matz, R., Purtell, R. J., Yokota, Y., Rubloff, G. W., Ho, P.S., J. Vac. Sci. Technol. A2, 253, (1984)Google Scholar
12. Shepherd, F. D. and Weeks, M. M., to be published.Google Scholar