Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T04:28:13.272Z Has data issue: false hasContentIssue false

Characterization of thin Chemical/Native Oxides on Si (100) by Auger and Angle-Resolved XPS

Published online by Cambridge University Press:  21 February 2011

Eddie D. Pylant
Affiliation:
SEMATECH, 2706 Montopolis Drive, Austin, TX 78741
Carolyn F. Hoener
Affiliation:
SEMATECH, 2706 Montopolis Drive, Austin, TX 78741
Mark F. Arendt
Affiliation:
University of Texas Department of Chemistry, Austin, TX 78712
Bob Witowski
Affiliation:
SEMATECH, 2706 Montopolis Drive, Austin, TX 78741
Get access

Abstract

Chemical/native oxides grown on Si(100) after several standard wet cleans are characterized by Angle-resolved X-ray Photoelectron Spectroscopy (ARXPS), and Auger Electron Spectroscopy using sputter depth profiles. Target Factor Analysis (TFA) was used to separate the Si LVV Auger peak into three components identified by their lineshapes and positions as Si, SiO2, and SiOx- Auger depth profiles were used to quantify the thickness of the oxides, the depth distribution, and amount of SiOx in the interface region. ARXPS was used to study the chemical state distribution in the native oxides as a function of depth. The depth distribution function from the Auger data was converted to an angle-resolved format for direct comparison to the angle-resolved XPS data. With this comparison, the SiOx lineshape is correlated to a 3:1 mixture of Si 3+ and Si 2+ oxidation states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Liehr, M. in Advanced Metallization and Processing for Semiconductor Devices and Circuits — II, edited by Avishay, Katz,… ( et al. )(Mater. Res. Soc. Proc. 259, Pittsburgh, PA, 1992) pp. 318.Google Scholar
2 Deal, B.E., in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, edited by Helms, C.R., and Deal, B.E. (Plenum Press, New York, 1988), p. 5.CrossRefGoogle Scholar
3 Irene, E.I., in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, edited by Helms, C.R., and Deal, B.E. (Plenum Press, New York, 1988), p. 61.CrossRefGoogle Scholar
4 Raider, S.I., The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, edited by Helms, C.R., and Deal, B.E. (Plenum Press, New York, 1988), p. 35.Google Scholar
5 Grundner, M., and Jacob, H., Appl. Phys. A 59, 73 (1986).Google Scholar
6 Hirose, M., Yasaka, T., Takakura, M., and Miyazaki, S., Solid State Tech. 34, 43 (Dec.1991).Google Scholar
7 Chabal, Y.J., in Advanced Metallization and Processing for Semiconductor Devices and Circuits -- II, edited by Avishay, Katz,… ( et al. )(Mater. Res. Soc. Proc. 259, Pittsburgh, PA, 1992) pp 349360.Google Scholar
8 Pai, P.G., Chao, S.S., Takagi, Y., and Lucovsky, G., J. Vac. Sci. Technol. A, 4, 689 (1986).CrossRefGoogle Scholar
9 Hollinger, G., Saoudi, R., Ferret, P., and Pitaval, M., in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, edited by Helms, C.R., and Deal, B.E. (Plenum Press, New York, 1988), p. 211.CrossRefGoogle Scholar
10 Ishizaka, A., Iwata, S., and Kamigaki, Y., Surface Sci. 84, 355 (1979).Google Scholar
11 Gräf, D., Grunder, M., Schulz, R., and Mühlhoff, L., J. Appl. Phys. 68, 5155 (1990).CrossRefGoogle Scholar
12 Bertrand, P.A., Fleischauer, P.D., and Song, Y., J. Appl. Phys. 54, 1100 (1983).Google Scholar
13 Chao, S.S., Tyler, J.E., Takagi, Y., Pai, P.G., Lucovsky, G., Lin, S.Y., Wong, C.K., and Mantini, M.J., J. Vac. Sci. Technol. A, 4, 1574 (1986).Google Scholar
14 Johannessen, J.S., Spicer, W.E., and Strausser, Y.E., J. Appl. Phys. 47, 3028 (1976).Google Scholar
15 Helms, C.R., N.M, Johnson, Schwarz, S.A., and Spicer, W.E., J. Appl. Phys. 50, 7007 (1979).Google Scholar
16 Chao, S.S., Takagi, Y., Lucovsky, G., Custer, R.C., Tyler, J.E., and Keem, J.E., Appl. Surf. Sci. 26, 575 (1986).Google Scholar
17 Lucovsky, G., Lin, S.Y., Richard, P.D., Chao, S.S., Takagi, Y., Pai, P., Tyler, J.E., and Keem, J.E., J. Non-Cryst. Solids, 75, 429 (1985).Google Scholar
18 Gaarenstroom, S.W., Appl. Surf. Sci. 7, 7 (1981).Google Scholar
19 Sarker, M., Calliari, L., Gonzo, L., and Marchetti, F., Surf. Interface. Anal. 20, 60 (1993).CrossRefGoogle Scholar
20 Hattori, T., Hisajima, Y., Saito, H., Suzuki, T., Daimon, H., Murata, Y., and M, Tsukada, Appl. Phys. Lett. 42, 244 (1983).Google Scholar
21 Lang, B., Appl. Surf. Sci. 37, 63 (1989).CrossRefGoogle Scholar
22 Chen, M., Batra, I.P., and Brundle, C.R., J. Vac. Sci. Technol. 16, 1216 (1979).Google Scholar
23 P.J, Grunthaner, Hecht, M.H., Grunthaner, F.J., and N.M, Johnson, J. Appl. Phys. 61, 629 (1987).Google Scholar
24 Holloway, P. H., and Bussing, T. D., Surf. Interface. Anal. 18, 251 (1992).Google Scholar
25 Jisl, , Surf. Interface. Anal. 15, 719 (1990).Google Scholar
26 Derry, G. N., and Vanderlinde, W. E., J. Vac. Sci. Technol. A, 10, 2826 (1992).Google Scholar
27 Egelhoff, W. F. Jr., J. Vac. Sci. Technol. A, 3, 1511 (1985).CrossRefGoogle Scholar
28 Fadley, C. S., Prog. Solid State Chem. 11, 265 (1976).Google Scholar