Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T07:02:55.908Z Has data issue: false hasContentIssue false

Characterization of the Electron Density in Si+-Implanted InP by Means of Raman Scattering by Lo-Plasma Coupled Modes

Published online by Cambridge University Press:  15 February 2011

J. Ibáñez
Affiliation:
Institut Jaume Almera (C.S.I.C.), Lluí Solé i Sabarís s.n., 08028 Barcelona, Spain
R. Cuscó
Affiliation:
Institut Jaume Almera (C.S.I.C.), Lluí Solé i Sabarís s.n., 08028 Barcelona, Spain
N. Blánco
Affiliation:
Departamento de Física Aplicada III, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain
G. González-Díaz
Affiliation:
Departamento de Física Aplicada III, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain
J. Jiménez
Affiliation:
Departamento de Física de la Materia Condensada, Cristalografía y Mineralogía, Escuela Técnica Superior de Ingenieros Industriales, 47011 Valladolid, Spain
L. Artús
Affiliation:
Institut Jaume Almera (C.S.I.C.), Lluí Solé i Sabarís s.n., 08028 Barcelona, Spain
Get access

Abstract

We have studied by means of Raman spectroscopy the electron density in two different n-type InP samples with similar doping densities, obtained, respectively, by ion-beam implantation of 150 keV Si+ and by uniform Sn doping during LEC growth. The Raman spectra recorded at 80 K display in both cases the L+ and L phonon-plasmon coupled modes. For the homogeneously doped InP:Sn sample, a simultaneous fit to the L+ and L peaks of a line shape model based on the Lindhard-Mermin dielectric function yields accurate values of the charge density. In the implanted sample, the nonuniformity of the charge distribution substantially broadens the L+ modes, but the line shape fit to the L mode still yields an average value of the electron density in the region probed by the laser beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cuscó, R., Talamrà, G., Artús, L., Martin, J. M. and Gonzàlez-Dífaz, G., J. Appl. Phys. 79, 3927 (1996).Google Scholar
[2] Artús, L., Cuscó, R., Ibáñiez, J., Martin, J. M. and González-Díaz, G., J. Appl. Phys. 82, 3736 (1997).Google Scholar
[3] Cuscó, R., Ibáñiez, J., Blanco, N., González-Díaz, G. and Arttis, L., Nucl. Instr. and Meth. B 132, 627 (1997).Google Scholar
[4] Aspnes, D. E. and Studna, A. A., Phys. Rev. B 27, 985 (1983).Google Scholar
[5] Artds, L., Cuscó, R., Martin, J. M., and González-Díaz, G., Phys. Rev. B 50, 11552 (1994).Google Scholar
[6] Abstreiter, G., Cardona, M. and Pinczuk, A., in Light Scattering in Solids IV, edited by Cardona, M. and Guintherodt, G., Topics in Applied Physics Vol. 54 (Springer-Verlag, Berlin, 1984) and references therein.Google Scholar
[7] Mermin, N. D., Phys. Rev. B 1, 2362 (1970).Google Scholar
[8] Ramsteiner, M., Wagner, J., Hiesinger, P., Kölher, K., and Rdssler, U., J. Appl. Phys. 73, 5023 (1993).Google Scholar
[9] Madelung, O., Osten, W. Von der, and Rössler, U., in Numerical Data and Functional Relationships in Sciences and Technology, edited by Madelung, O., Landolt-Bdrnstein, , New Series, Group III, Vol. 17a (Springer-Verlag, Berlin, 1982).Google Scholar
[10] Anastassakis, E., Raptis, Y. S., Hdnermann, M., Richter, W., and Cardona, M., Phys. Rev. B 38, 7702 (1988).Google Scholar