Skip to main content Accessibility help

Characterization of Stress and Mosaicity in Homoepitaxial Diamond Films

  • W. Brock Alexander (a1), Paul H. Holloway (a1), Patrick Doering (a2) and Robert Linares (a2)


Diamond films were grown on (100) and (110) oriented natural diamond substrates by hot filament assisted chemical vapor deposition (HFCVD) to thicknesses of 7 to 100μm. Raman spectroscopy was used to measure tensile stresses of up to ∼2GPa for some of the (110) films. The development of stress was attributed to the incorporation of impurities (Re, Mo, and H). Impurity concentrations were greater at the interface than through the film thickness. Up to∼11% H and 50ppm Re were measured in the films with secondary ion mass spectrometry (SIMS). Homoepitaxial diamond films were further characterized using a seven crystal high resolution x-ray diffraction system. This new characterization tool allowed the separation of the effects of mosaicity from those of variation in lattice parameter.



Hide All
1. Schemrmer, J.J., van Enckevort, W.J.P., and Giling, L.J., Diamond and Related Materials, 3, 408 (1994).
2. Alexander, W. Brock, Characterization of Homoepitaxial Diamond Thin Films Grown By Hot Filament Assisted Chemical Vapor Deposition, Ph.Dissertation, D., University of Florida, May (1995).
3. Boppart, H., van Straaten, J., and Silvera, Isaac F., Phys Review B 32, 14231425 (1985).
4. Grimsditch, M. H., Anastassakis, E., and Cardona, M., Phys. Rev. B 18, 901904 (1978).
5. Parsons, B.J., Proc. R. Soc. Lond. A. 352, 397 (1977).
6. Sharma, S.K., Mao, H.K., Bell, P.M., and Xu, J.A., Journal of Raman Spectroscopy 16, 350 (1985).
7. Tardieu, A., Cansell, F., and Petitet, J.P., J. Appl. Phys. 68, 3243 (1990).
8. Whalley, E., Lavergne, A., and Wong, P.T.T., Rev. Sci. Instrum. 47, 845 (1976).
9. Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley Publishing Co. Inc., Reading, MA, 1978).
10. Fewster, P.F., Appl. Surf. Sci. 50, 9 (1991).
11. Alexander, W.B., Holloway, P.H., Simmons, J., and Ochoa, R., J. Vac. Sci. Technol. A 12, 2943 (1994).
12. Chu, J., D'Evelyn, M.P., Hauge, R.H., and Margrave, J.L., J. Appl. Phys. 70, 1695 (1991).
13. Gonzalez-Hemandez, J., Azarbayejani, G.H., Tsu, R., and Pollack, F.H., Appl. Phys. Lett. 47, 1350 (1985).
14. Campbell, I.H. and Fauchet, P.M., Mater. Res. Symp. Proc. Vol.53, 311 (1986).
15. Fauchet, P.M., Campbell, I.H., and Adar, F., Appl. Phys. Lett. 47, 479 (1985).
16. Tsu, R., Gonzalez-Hemandez, J., Chao, S.S., Lee, S.C., and Tanaka, K., Appl. Phys. Lett. 40, 534 (1982).
17. Tsu, R., Gonzalez-Hernandez, J., Doehler, J., and Ovshinsky, S.R., Solid State Comm. 46, 79 (1983).
18. Campbell, I.H. and Fauchet, P.M., Solid State Comm. 58, 739 (1986).
19. Richter, H. and Ley, L., J. Phys. 42, C4 (1981).
20. Davis, Robert F., Eds., Diamonds Films and Coatings (Noyes Publications, Park Ridge, N.J., (1993).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed