Skip to main content Accessibility help
×
Home

Characterization of Single-walled Carbon Nanotube Fibers and Correlation with Stretch Alignment

  • Michelle Chen (a1), Csaba Guthy (a1), Juraj Vavro (a1), John E. Fischer (a1), Stéphane Badaire (a2), Cécile Zakri (a2), Philippe Poulin (a2), Vincent Pichot (a3) and Pascale Launois (a3)...

Abstract

Structural, electrical and thermal methods are applied to characterize single-walled carbon nanotube (SWNT) fibers with post-extrusion stretching as the independent variable. HiPco SWNTs are dispersed in water using sodium dodecyl sulfate (SDS), and then co-extruded with polyvinyl alcohol (PVA)/water through a long syringe into a rotating water/PVA coagulation bath. Partial axial alignment is thereby achieved, and further enhanced by applying tension to the flexible green fibers in the coagulation bath. Our findings include: (1) X-ray diffraction shows that the full width at half maximum (FWHM) of the Bragg peaks decreases from 55 (as-extruded) to less than 30 degrees by 80% elongation. That is, SWNT alignment increases linearly with stretch (up to 80%). (2) In resistivity at room temperature vs. stretch ratio, result shows an initial rapid decrease followed by saturation; essentially all the improvement in electronic transport is obtained once alignment reached 40° FWHM. (3) Annealing in hydrogen at 1000°C is performed to drive out PVA, to improve inter-tube and inter-bundle contacts, and to heal damage on the tube walls. Such annealing is found to increase conductivity by at least 4 orders of magnitude. (4) Below 25 K, resistivity vs. temperature of the annealed fiber is well-represented by Coulomb gap variable range hopping (CG-VRH). It is rationalized that the Coulomb interactions in disordered systems open a gap at the Fermi energy. Above 25 K, the thermal energy is greater than the Coulomb gap, so thermal activation is more probable than correlated electron hops. (5) Finally, a measurable thermal conductivity is observed as stretch alignment increases.

Copyright

References

Hide All
1. Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P. and Poulin, P., Science 290, 1331 (2000).
2. Poulin, P., Vigolo, B. and Launois, P., Carbon 40, 1741 (2002).
3. Ericson, L. M., Fan, H., Peng, H., Davis, V. A., Zhou, W., Sulpizio, J., Wang, Y., Booker, R., Vavro, J., Guthy, C., Parra-Vasquez, A. N. G., Kim, M. J., Ramesh, S., Saini, R. K., Kittrell, C., Lavin, G., Schmidt, H., Adams, W. W., Billups, W. E., Pasquali, M., Hwang, W.-F., Hauge, R., Fischer, J. E. and Smalley, R. E., Science 305, 1447 (2004).
4. Launois, P. and Poulin, P., Encyclopedia of Nanoscience and Nanotechnology 4, 1 (2004).
5. Dalton, A.B., Collins, S., Muňoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B. G. and Baughman, R.H., Nature 423, 703 (2003).
6. Vigolo, B., Lucas, M., Launois, P., Bernier, P. and Poulin, P., App. Phys. Lett. 81, 1210 (2002).
7. Zhou, W., Vavro, J., Guthy, C., Winey, K.I., Fischer, J.E., Ericson, L.M., Ramesh, S., Saini, R., Davis, V.A., Kittrell, C., Pasquali, M., Hauge, R.H., Smalley, R.E., J. Appl. Phys. 95, 649 (2004).
8. Launois, P., Marucci, A., Vigolo, B., Bernier, P., Derré, A., and Poulin, P., J. Nanosci. Nanotech. 1, 125 (2001).
9. Vavro, J., Kikkawa, J. and Fischer, J. E., Phys. Rev. B (BT8910 in press).
10. Fischer, J. E., Zhou, W., Vavro, J., Llaguno, M. C., Guthy, C., Haggenmueller, R., Casavant, M. J., Walters, D. E. and Smalley, R. E., J. Appl. Physics 93, 2157 (2003).
11. Hone, J., Llaguno, M. C., Biercuk, M., Johnson, A.T., Batlogg, B., Benes, Z. and Fischer, J.E., Applied Physics A 74, 339 (2002).
12. Zhou, W., Ooi, Y. H., Russo, R., Papanek, P., Luzzi, D. E., Fischer, J. E., Bronikowski, M. J., Willis, P.A. and Smalley, R. E., Chem. Phys. Letters 350, 610 (2001).
13. Lucas, M., Vigolo, B., Badaire, S., Le Bolloc'h, D., Marucci, A., Durand, D., Hamilton, M., Zakri, C., Poulin, P. and Launois, P., AIP Conf. Proc. 633, H. Kuzmany, J. Fink, M. Mehring and S. Roth Eds., 579 (2002).
14. Haggenmueller, R., Zhou, W., Fischer, J.E., Winey, K.I., J. Nanosci. Nanotech. 3, 105 (2003).

Related content

Powered by UNSILO

Characterization of Single-walled Carbon Nanotube Fibers and Correlation with Stretch Alignment

  • Michelle Chen (a1), Csaba Guthy (a1), Juraj Vavro (a1), John E. Fischer (a1), Stéphane Badaire (a2), Cécile Zakri (a2), Philippe Poulin (a2), Vincent Pichot (a3) and Pascale Launois (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.