Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T20:35:41.194Z Has data issue: false hasContentIssue false

Characterization of Shell Material on Colloidal CdSe/ZnS Quantum Dots

Published online by Cambridge University Press:  21 March 2011

Zhiheng Yu
Affiliation:
Physics Department, Cornell University, Ithaca, NY 14853
Li Guo
Affiliation:
Chemistry Department, University of Rochester, Rochester, NY 14627
Hui Du
Affiliation:
Chemistry Department, University of Rochester, Rochester, NY 14627
Todd Krauss
Affiliation:
Chemistry Department, University of Rochester, Rochester, NY 14627
John Silcox
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
Get access

Abstract

Scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) was used to determine the distribution of ZnS shell material on colloidal core-shell CdSe/ZnS quantum dots (QDs). A sub-nm electron probe was placed at various locations on core-shell QDs to ascertain the chemical distribution of the shell material. While a definite shell of ZnS was detected surrounding the CdSe core, the integrated EELS signals from positions around the QD suggest the distribution of the shell material may not be uniform. A non-uniform shell implies a reduced quality of the QD surface passivation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bruchez, M., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A.P., Science 281, 2013 (1998).Google Scholar
2. Chan, W.C.W. and Nie, S.M., Science 281, 2016 (1998).Google Scholar
3. Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V. and Bawendi, M.G., J. Am. Chem. Soc. 122, 12142 (2000).Google Scholar
4. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H. and Libchaber, A., Science 298, 1759 (2002).Google Scholar
5. Coe, S., Woo, W.K., Bawendi, M. and Bulovic, V., Nature 420, 800 (2002).Google Scholar
6. Klimov, V.I., Mikhailovsky, A. A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.-J. and Bawendi, M. G. Science 290, 314 (2000).Google Scholar
7. Tesster, N., Medvedev, V., Kazes, M., Kan, S. and Banin, U., Science 295, 1506 (2002).Google Scholar
8. Hines, M.A. and Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).Google Scholar
9. Nirmal, M., Dabboussi, B.O., Bawendi, M.G., Macklin, J. J., Trautman, J. K., Harris, T. D., Brus, L. E., Nature, 383, 802 (1996).Google Scholar
10. Sugisaki, M., Ren, H. W., Nishi, K., Masumoto, Y., Phys. Rev. Lett. 86, 4883 (2001).Google Scholar
11. Silcox, J., Current Opinion in Solid State & Materials Science 3, 336 (1998).Google Scholar
12. Murray, C.B., Norris, D.J. and Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
13. Reimer, L., Transmission Electron Microscopy, 3rd ed. (Springer-Verlag, Berlin, 1993) p. 457.Google Scholar
14. Murray, C.B., Sun, S., Gashler, W., Doyle, H., Betley, T. A., Kagan, C. R., IBM J. Res. Dev. 45, 47 (2001).Google Scholar
15. Du, H., Chen, C., Krauss, T. D., Harbold, J., Wise, F. W., Thomas, M., and Silcox, J., Nano Lett. 2, 1253 (2002).Google Scholar
16. Buchner, U., Physica Status Solidi B 83, 493 (1977).Google Scholar
17. Hillyard, S., Loane, R.F. and Silcox, J., Ultramicroscopy 49, 14 (1993).Google Scholar