Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T21:16:49.418Z Has data issue: false hasContentIssue false

Characterization of Polysiloxane Modified Polysilsesquioxane Films for Low Dielectric Applications: Microstructure, Electrical Properties and Mechanical Properties

Published online by Cambridge University Press:  01 February 2011

Jingyu Hyeon-Lee
Affiliation:
E-Polymer Laboratory, Samsung Advanced Institute of Technology, Suwon, 440-600, Korea
Yi Yeol Lyu
Affiliation:
E-Polymer Laboratory, Samsung Advanced Institute of Technology, Suwon, 440-600, Korea
Sang Kook Mah
Affiliation:
E-Polymer Laboratory, Samsung Advanced Institute of Technology, Suwon, 440-600, Korea
Jin-Hyeong Yim
Affiliation:
E-Polymer Laboratory, Samsung Advanced Institute of Technology, Suwon, 440-600, Korea
Hyun-Dam Jeong
Affiliation:
E-Polymer Laboratory, Samsung Advanced Institute of Technology, Suwon, 440-600, Korea
Mong Sup Lee
Affiliation:
Dept of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, 305-701, Korea
Sang Youl Kim
Affiliation:
Dept of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, 305-701, Korea
Get access

Abstract

Poly(ε-caprolactone) (PCL) / poly(siloxane-silsesquioxane) (PSQ-PSSQ) nanohybrid films were fabricated. The dielectric constant of the film was scaled down from 2.66 to 2.28 when the 30% PCL was added into poly(siloxane-silsesquioxane) matrix. The FE-SEM micrograph of poly(ε-caprolactone) / poly(siloxane-silsesquioxane) (PSQ-PSSQ) nanohybrid film shows nanoporous structure. The modulus and hardness of the film decrease with increasing film thickness. As PCL content increases, modulus and hardness of the films decreases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, P. W., Mizuno, S., Verma, A., Tran, H., and Nguyen, B., J. Electrochem. Soc. 143(6), 2015 (1996).Google Scholar
2. Martin, S. J., Godshalx, J. P., Mills, M. E., II, E. O. Shaffer, and Townsend, P. H., Adv. Mater. 12(23), 1769(2000).Google Scholar
3. Dang, T. D., Mather, P. T., Alexander, M. D. Jr, Grayson, C. J., Houtz, M. D., Spry, R. J., and Arnold, F. E., J. Polym. Sci: part A: Polym. Chem. 38, 1991(2000).Google Scholar
4. Loy, D. A., Baugher, B. M., Baugher, C. R., Schneider, D. A., and Rahimian, K., Chem. Mater. 12, 3624(2000).Google Scholar
5. Hacker, N. P., MRS Bull. 22(10), 33(1997).Google Scholar
6. Kohl, A. T., Mimna, R., Schick, R., Rhodes, L., Wang, W. L., and Kohl, P.A., Electrochem. Solid-State Lett. 2(2), 77(1999).Google Scholar
7. Kondoh, E., Asano, T., Nakashima, A. and Komatu, M., J. Vac. Sci. Tech.B. 18(3), 1276(2000).Google Scholar
8. Baney, R. H., Itoh, M., Sakakibara, A., and Suzuki, T., Chem. Rev. 95, 1409(1995).Google Scholar
9. M, Trollsas, Hedirck, J. L., Mecerreyes, D., Dubois, Ph., Jerome, R., Ihre, H., and Hult, A., Macromolecules 30, 8508(1997).Google Scholar
10. Oliver, W. C. and Pharr, G. M., J. Mater. Res.7, 1564(1992).Google Scholar
11. Chan, C. M., Cao, G. Z., Fong, H., Sarikaya, M., Robinson, J. and Nelson, L., J. Mater. Res., 15(1), 148(2000).Google Scholar