Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:40:30.428Z Has data issue: false hasContentIssue false

Characterization of Plasma Synthesized Vertical Carbon Nanofibers for Nanoelectronics Applications

Published online by Cambridge University Press:  18 May 2012

Jaesung Lee
Affiliation:
Electrical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
Philip X.-L. Feng*
Affiliation:
Electrical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
Anupama B. Kaul*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
*
*Corresponding Authors, Email: philip.feng@case.edu, anu.kaul@jpl.nasa.gov
*Corresponding Authors, Email: philip.feng@case.edu, anu.kaul@jpl.nasa.gov
Get access

Abstract

We report on the material characterization of carbon nanofibers (CNFs) which are assembled into a three-dimensional (3D) configuration for making new nanoelectromechanical systems (NEMS). High-resolution scanning electron microscopy (SEM) and x-ray electron dispersive spectroscopy (XEDS) are employed to decipher the morphology and chemical compositions of the CNFs at various locations along individual CNFs grown on silicon (Si) and refractory nitride (NbTiN) substrates, respectively. The measured characteristics suggest interesting properties of the CNF bodies and their capping catalyst nanoparticles, and growth mechanisms on the two substrates. Laser irradiation on the CNFs seems to cause thermal oxidation and melting of catalyst nanoparticles. The structural morphology and chemical compositions of the CNFs revealed in this study should aid in the applications of the CNFs to nanoelectronics and NEMS.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.L., Lieber, C.M., Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 9497 (2000).CrossRefGoogle ScholarPubMed
Feng, X.L., Matheny, M.H., Zorman, C.A., Mehregany, M., Roukes, M.L., Low voltage nanoelectromechanical switches based on silicon carbide nanowires, Nano Lett. 10, 28912896 (2010).CrossRefGoogle ScholarPubMed
Dujardin, E., Derycke, V., Goffman, M.F., Lefevre, R., Bourgoin, J.P., Self-assembled switches based on electroactuated multiwalled nanotubes, Appl. Phys. Lett. 87, 193107 (2005).CrossRefGoogle Scholar
Eriksson, A., Lee, S., Sourab, A., Issacsson, A., Kaunisto, R., Kinaret, J.M., Campbell, E.E.B., Direct transmission detection of tunable mechanical resonance in an individual carbon nanofiber relay, Nano Lett. 8, 12241228 (2008).CrossRefGoogle Scholar
Kaul, A.B., Wong, E.W., Epp, L., Hunt, B.D., Electromechanical carbon nanotube switches for high-frequency applications, Nano Lett. 6, 942947 (2006).CrossRefGoogle ScholarPubMed
Zhang, Y.G., Chang, A., Cao, J., Wang, Q., Kim, W., Li, Y.M., Morris, N., Yenilmez, E., Kong, J., Dai, H.J., Electric-field directed growth of aligned single-walled carbon nanotubes, Appl. Phys. Lett. 79, 31553157 (2001).CrossRefGoogle Scholar
Teo, K.B.K., Chhowalla, M., Amaratunga, G.A., Milne, W.I., Pirio, G., Legagneux, P., Wyczisk, F., Olivier, J., Pribat, D., Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy, J. Vac. Sci. Technol. B 20, 116121 (2002).CrossRefGoogle Scholar
Melechko, A.V., Merkulov, V.I., McKnight, T.E., Guillorn, M.A., Klein, K.L., Lowndes, D.H., Simpson, M.L., Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly, J. Appl. Phys. 97, 041301 (2005).CrossRefGoogle Scholar
Zheng, H.M., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U., Alivisatos, A.P., Observation of single colloidal platinum nanocrystal growth trajectories, Science 324, 13091312 (2009).CrossRefGoogle ScholarPubMed
Sato, S., Nozaki, S., Morisaki, H., Photo-oxidation of germanium nanostructures deposited by the cluster-beam evaporation technique, J. Appl. Phys. 81, 15181521 (1997).CrossRefGoogle Scholar