Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-26T21:08:15.914Z Has data issue: false hasContentIssue false

Characterization of Palladium Acetylacetonate as a CVD Precursor for Pd Metallization

Published online by Cambridge University Press:  22 February 2011

Steven P. Kowalczyk
Affiliation:
IBM Research, T. J. Watson Research Center, Yorktown Heights, N. Y., 10598
Michael Ldgdlund
Affiliation:
Department of Physics, Linköping University, Linköping, Sweden
Mats Fahlman
Affiliation:
Department of Physics, Linköping University, Linköping, Sweden
William R. Salaneck
Affiliation:
Department of Physics, Linköping University, Linköping, Sweden
Get access

Abstract

Palladium acetylacctonate has received much consideration as a possible precursor for chemical vapor deposition of metallic palladium films for a variety of microelectronic applications. We have studied the adsorption and decomposition of palladium acetylacetonate ongold, polyimide, silicon and silver surfaces to understand the initial mechanisms of metallic palladium film formation. In situ x-ray photoelcctron spectroscopy was used to characterized the films after adsorption and their decomposition after thermal treatment or laser irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baum, T.M., Miller, D.C., OToole, T.R., Chem. Mater 3, 714 (1991).Google Scholar
2. Thomas, R.R. and Park, J.M., J. Electrochem. Soc. 136 1661 (1989).Google Scholar
3. Gottslebcn, O., Roesky, II.W., Stuke, M., Adv. Mater. 3, 201(1991).Google Scholar
4. Esrom, II. and Kogelschatz, U., Appl. Surf. Sci. 46, 158 (1990).Google Scholar
5. Zhang, Y. and Stuke, M., Appl. Surf. Sci. 46, 153 (1990).Google Scholar
6. Baufay, L. and Gross, M.E., Mat. Res. Soc. Symp. Proc. 101, 89 (1988).Google Scholar
7. Cole, U.S., Liu, Y.S., Rose, J.W., Guida, R., Appl. Phys. Lett. 53, 2111 (1988).Google Scholar
8. Kim, Y.-G., Bialy, S., Sauf, G.T., Miller, R.W., Spence, J.T., Dowben, P.A., Datta, S.. J. Micromech. Microeng. 1, 42 (1991).Google Scholar
9. Staur, G.T., Dowben, P.A., Emrich, K., Barfuss, S., Hirschwald, W., Boag, N.M., J. Phys. Chem. 93, 749 (1989).Google Scholar
10. Stark, T.J., Mayer, T.M., Russell, P.E., J. Vac. Sci. Technol. B 9, 3475 (1991).Google Scholar
11. Gozum, J.E., Pollina, D.M., Jensen, J.A., Girolami, G.S., J. Am. Chem. Soc. 110, 2688 (1988).Google Scholar
12. Salancck, W.R., Bergman, R., Sundgren, J.-E., Rockctt, A., Motooka, T., Greene, J.E., Surf. Sci. 198, 461 (1988).Google Scholar
13. Kowalczyk, S.P., Platau, A., Salaneck, W.R., Ritsko, J.J., (unpublished).Google Scholar