Skip to main content Accessibility help

Characterization of Nano-crystalline Diamond Films Grown Under Continuous DC Bias During Plasma Enhanced Chemical Vapor Deposition


Nanocrystalline diamond films have generated much interested due to their diamond-like properties and low surface roughness. Several techniques have been used to obtain a high re-nucleation rate, such as hydrogen poor or high methane concentration plasmas. In this work, the properties of nano-diamond films grown on silicon substrates using a continuous DC bias voltage during the complete duration of growth are studied. Subsequently, the layers were characterised by several morphological, structural and optical techniques. Besides a thorough investigation of the surface structure, using SEM and AFM, special attention was paid to the bulk structure of the films. The application of FTIR, XRD, multi wavelength Raman spectroscopy, TEM and EELS yielded a detailed insight in important properties such as the amount of crystallinity, the hydrogen content and grain size. Although these films are smooth, they are under a considerable compressive stress. FTIR spectroscopy points to a high hydrogen content in the films, while Raman and EELS indicate a high concentration of sp2 carbon. TEM and EELS show that these films consist of diamond nano-grains mixed with an amorphous sp2 bonded carbon, these results are consistent with the XRD and UV Raman spectroscopy data.



Hide All
1 Williams, O.A., Nesládek, M., Daenen, M., Michaelson, Sh., Hoffman, A., Ōsawa, E., Haenen, K., Jackman, R.B., Diamond Relat. Mater. 17, 1080 (2008).
2 Krueger, A., Advanced Mater. 20, 2444 (2008).
3 Huang, H., Pierstorff, E. Osawa, D. Ho, Nano Lett. 7, 3305 (2007).
4 Jiang, N., Sugimoto, K., Eguchi, K., Inaoka, T., Shintani, Y., Makita, H., Hatta, A., Hiraki, A., J. Cryst. Growth 222, 591 (2001).
5 Schreck, M., Baur, T., Fehling, R., Muller, M., Stritzker, B., Bergmaier, A., Dollinger, G., Diamond Relat. Mater. 7, 293 (1998).
6 Gu, C.Z., Jiang, X., J. Appl. Phys. 88, 1788 (2000).
7 Mortet, V., Daenen, M., Teraji, T., Lazea, A., Vorlicek, V., D'Haen, J., Haenen, K., D'Olieslaeger, M., Diamond Relat. Mater. 17, 1330 (2008).
8 Sharda, T., Soga, T., Jimbo, T., Umeno, M., Diamond Relat. Mater. 10, 352 (2001).
9 Ferrari, A.C., Robertson, J., Phys. Rev. B 63 (2001) 121405(R).
10 Kuzmany, H., Pfeiffer, R., Salk, N., Gunther, B., Carbon 42 (2004) 911.
11 Lopez-Rios, T., Sandre, E., Leclercq, S., Sauvain, E., Phys. Rev. Lett. 76 (1996) 4935.
12 Reich, S., Thomsen, C., Phil. Trans. R. Soc. Lond. A 362, 2271 (2004).
13 Thomsen, C., Reich, S., Phys. Rev. Lett. 85, 5214 (2000).
14 Yoshikawa, M., Yuri, Y., Maegawa, M., Katagiri, G., Ishida, H, Ishitani, A., Appl. Phys. Lett. 62, 3114 (1993).
15 Chen, J., Deng, S.Z., Chen, J., Yu, Z.X., and Xu, N.S., Appl. Phys. Lett. 74, 3651 (1999).
16 Nemanich, R.J., Solin, S.A., Martin, R. M., Phys. Rev. B 23, 6348 (1981).
17 Boppart, H., Straaten, J. van, Silver, I., Phys. Rev. B 32, 1423 (1985).
18 Socrates, G., Infrared and Raman characteristic group frequencies - tables and charts, 3rd ed. (John Weiley & Sons Ltd, Chichester, 2001) p. 50.
19 Mantel, B.F., Stammler, M., Ristein, J., Ley, L., Diamond Relat. Mater. 9, 1032 (2000).
20 Michaelson, Sh., Ternyak, O., Akhvlediani, R., Williams, O.A., Gruen, D., Hoffman, A., Phys. Stat. Sol. (a) 204, 2860 (2007).
21 Schrader, Bernhard, Infrared and Raman spectroscopy - Methods and applications (VCH Verlagsgesellschaft mbH, Weinheim, 1995), p.197199.
22 Michaelson, Sh. and Hoffman, A., Diamond Relat. Mater. 15, 486 (2006).
23 Bachmann, P. K. and Wiechert, D. U., Diam. Relat. Mater. 1, 422 (1992).
24 Kim, J.-Y., Kim, E.-R., Ihm, D.-W., Tasumi, M., Bull. Korean Chem. Soc. 23, 1404 (2002).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed