Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T03:01:07.812Z Has data issue: false hasContentIssue false

Characterization of Metal-Oxide-Silicon Interface by Monoenergetic Positron Beam

Published online by Cambridge University Press:  03 September 2012

Yuzuru Ohji
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubun-ji, Tokyo 185, Japan
Akira Uedono
Affiliation:
Faculty of Engineering, University of Tokyo, Bunkyou-ku, Tokyo 185, Japan
Long Wei
Affiliation:
Institute of Material Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Yasushi Tabuki
Affiliation:
Institute of Material Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Shoichiro Tanigawa
Affiliation:
Institute of Material Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

MOS device interfaces are investigated using carrier injection and monoenergetic positron beam experiments. Carrier injection reveals that the holes injected into gate S1O2 film seem to be the main cause of the interface state generation and the dielectric breakdown of thin-gate SiO2. Positron annihilation experiments show that the positron diffuse along the electric field in the Si and the gate SiO2 and are trapped in the interface region before annihilation. The obtained value of 5 at the SiO2/Si interface was 0.500 ±0.003. The behavior of holes in the SiO2 and SiO2/Si interface are simulated using the monoenergetic positron annihilation technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) SChultz, P. J. and Lynn, K. G., Rev. Mod. Phys. 60, 701, (1988)CrossRefGoogle Scholar
2) Nielsen, B., Lynn, K. G., Chen, Y. C, and Welch, D. O., Appl. Phys. Lett. 51, 1022, (1987)CrossRefGoogle Scholar
3) Nielsen, B., Lynn, K. G., Welch, D. O., Leung, T. C and Rubloff, G. W., Phys. Rev. B40, 1434, (1989)CrossRefGoogle Scholar
4) Lynn, K. G., Nielsen, B., Welch, D. O., Can. J. Phys. 67, 818, (1989)CrossRefGoogle Scholar
5) Corbel, C., Hautojärvi, P., Mäkinen, J., Vehanen, A. and Mathiot, D., J. Phys. Condens. Matter 1, 6315, (1989)CrossRefGoogle Scholar
6) Leung, T. C, Kong, Y., Lynn, K. G., Nielsen, B., Weinberg, Z. A. and Rubloff, G. W., Appl. Phys. Lett. 58, 86, (1991)CrossRefGoogle Scholar
7) Nicollian, E. H. and Brews, J. R., MOS (Metal-Oxide-Semiconductor) Physics and Technology (Wiley, New York, 1982)Google Scholar
8) Uedono, A., Tanigawa, S., Suzuki, K., and Watanabe, K., Appl. Phys. Lett. 53, 473, (1988)CrossRefGoogle Scholar
9) Miki, H., Asada, K., Sugano, T., and Ohji, Y., Solid-State Electr. 33, 395, (1990)Google Scholar
10) Vehanen, A., Saarinen, K., Hautojärvi, P. and Huomo, H., Phys. Rev. B35, 4606, (1987)CrossRefGoogle Scholar
11) Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar