Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-17T12:32:55.467Z Has data issue: false hasContentIssue false

Characterization of Li insertion mechanisms in negative electrode materials for Li-ion batteries by Mössbauer spectroscopy and first-principles calculations

Published online by Cambridge University Press:  01 February 2011

P.E. Lippens
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (UMR 5072 CNRS)Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
L. Aldon
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (UMR 5072 CNRS)Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
C.M. Ionica
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (UMR 5072 CNRS)Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
F. Robert
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (UMR 5072 CNRS)Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
J. Olivier-Fourcade
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (UMR 5072 CNRS)Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
J.C. Jumas
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (UMR 5072 CNRS)Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
Get access

Abstract

The Mössbauer spectroscopy is an efficient experimental tool to study lithium insertion mechanisms in negative electrodes of Li-ion batteries at the atomic scale. However, a quantitative interpretation of the experimental data is often difficult due to the complexity of the spectra and we propose to use first-principle calculations of the hyperfine parameters. Three different types of negative electrode materials are considered. First, the experimental 119Sn Mössbauer spectrum obtained for the insertion of 3.5 Li into SnO is compared to the theoretical spectrum, which clearly establishes the existence of Li-Sn stable phases. Then, the analysis of the 121Sb Mössbauer spectra for metal antimonides at the end of the first discharge shows different behaviours depending on the lithium rate. Finally, tin and iron doped titanates are considered to study changes in Ti local environments during lithium insertion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huggins, R.A., J. Power Sources 81, 13 (1999).Google Scholar
2. Idota., Y., Kubota., T., Matsufuji., A., Maekawa., Y., Miyasaka., T., Science 276, 1395 (1997).Google Scholar
3. Courtney, I.A., Dahn, J.R., J. Electrochem. Soc. 144, 2045 (1997).Google Scholar
4. Chouvin., J., Branci, C., Sarradin., J., Olivier-Fourcade, J., Jumas, J.C., Simon., D., Biensan., Ph., J. Power Sources 81–82, 277 (1999).Google Scholar
5. Alcantara., R., Fernandez-Madrigal, F.J., Lavela., P., Tirado, J.L., Jumas, J.C., Olivier Fourcade, J., J. Matter. Chem. 9, 2517 (1999).Google Scholar
6. Fernandez-Madrigal, F.J., Lavela., P., Perrez-Vicente, C., Tirado, J.L., J. Electroanal. Chem. 501, 205 (2001).Google Scholar
7. Vaughey, J.T., Johnson, C.S., Kropf, A.J., Benedek., R., Thackeray, M.M., Tostmann., H., Sarakonsri., T., Hackney., S., Fransson., L., Edström, K., Thomas, J.O., J. Power Sources 97, 194 (2001).Google Scholar
8. Tarascon, J.M., Morcrette., M., Dupont., L., Chabre., Y., Payen., C., Larcher., D., Pralong., V., J. Electrochem. Soc. 150, 732 (2003).Google Scholar
9. Grugeon., S., Laruelle., S., Dupont, L. and Tarasco, J.M., Solid State Sciences 5, 895 (2003)Google Scholar
10. Kubiak., P., Garcia., A., Womes., M., Aldon., L., Olivier-Fourcade, J., Lippens, P.E. and Jumas, J.C., J. Power Sources 119, 626 (2003).Google Scholar
11. Denis., S., Baudrin., E., Touboul., E., Tarascon, J.M., J. Electrochem. Soc. 144, 4099 (1997).Google Scholar
12. Rubenbauer, K. and Birchall., T., Hyperfine Interactions 7, 125 (1979).Google Scholar
13. Lippens, P.E., Olivier-Fourcade, J., Jumas, J.C., Hyp. Int. 126, 137 (2000).Google Scholar
14. Lippens, P.E., Olivier-Fourcade, J., Jumas, J.C., Hyp. Int. 141/142, 303 (2002).Google Scholar
15. Blaha., P., Schwarz, K. and Herzig., P., Phys. Rev. Lett. 54, 1192 (1985).Google Scholar
16. Blaha., P., Schwarz, K. and Luitz., J., WIEN97, Vienna University of Technology, 1997 [improved and updated Unix version of the original copyright WIEN code, which was published by P. Blaha., K. Schwarz., P. Sorantin and S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)].Google Scholar
17. Hohenberg, P. and Kohn., W., Phys. Rev. 136 (1964) B864;Google Scholar
Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
18. Perdew, J.P., Burke., S., Ernzerhof., M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
19. Courtney, I.A., Tse, J.S., Mao., O., Hafner., J., Dahn, J.R., Phys. Rev. B 58, 15583 (1998).Google Scholar
20. Müller, W., Schäfer, H., Z. Naturforsch 28b, 246 (1973).Google Scholar
21. Müller, W., Z. Naturforsch 29b, 304 (1974).Google Scholar
22. Fransson, L.M.L., Vaughey, J.T., Edström, K. and Thackeray, M.M., J. Electrochem. Soc. 150, A86 (2003).Google Scholar
23. Panero., S., Satolli., D., Salomon., M., Scrosati., B., Electrochem. Comm. 2, 810 (2000).Google Scholar