Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T01:24:54.347Z Has data issue: false hasContentIssue false

Characteristics of Short-Channel Mosfet's in Laser Crystallized Si-on-Insulator

Published online by Cambridge University Press:  22 February 2011

K. K. Ng
Affiliation:
Bell Laboratories, Murray Hill, N.J. 07974
G. K. Celler
Affiliation:
Bell Laboratories, Murray Hill, N.J. 07974
E. I. Povilonis
Affiliation:
Bell Laboratories, Murray Hill, N.J. 07974
L. E. Trimble
Affiliation:
Bell Laboratories, Murray Hill, N.J. 07974
S. M. Sze
Affiliation:
Bell Laboratories, Murray Hill, N.J. 07974
Get access

Abstract

Data are reported on short-channel MOSFET's fabricated in laser crystallized silicon-on-insulator (SOI) structures. In this experiment, special effort was made to minimize enhanced diffusion of dopants from the source and drain regions along grain boundaries. Instead of the standard anneal used for the implant activation, rapid thermal annealing and low temperature furnace annealing were used. These modified processes yielded functional MOSFET's with channel lengths as short as 1.5 μm, and ring oscillators of 2.0 μm. A speed of 115 ps per stage was obtained in these ring oscillators which is not only the fastest ever reported on any SOI structure, but also a factor of 2 faster than that from the same circuits in bulk Si. The results demonstrate quantitatively the speed improvement of SOI over bulk material due to reduced parasitic capacitance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Celler, G. K., Trimble, L. E., Ng, K. K., Leamy, H. J. and Baumgart, H., Appl. Phys. Lett., 40, 1043 (1982).Google Scholar
[2]Lam, H. W., Pinizzotto, R. F. and Tasch, A. F. Jr., J. Electrochem. Soc., 128(9), 1981 (1981).Google Scholar
[3]Ng, K. K., Celler, G. K., Povilonis, E. I., Frye, R. G., Leamy, H. J. and Sze, S. M., IEEE Electron Device Lett., EDL–2(12), 316 (1981).Google Scholar
[4]Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., Appl. Phys. Lett., 38(11), 900 (1981).Google Scholar
[5]Baumgart, H., Leamy, H. J., Trimble, L. E., Doherty, C. J. and Celler, G. K. in: Grain Boundaries in Semiconductors, Leamy, H. J., Pike, G. E. and Seager, C. H., eds. (North Holland, New York 1982) p. 311.Google Scholar
[6]Lepselter, M. P., Alles, D. S., Levinstein, H. J., Smith, G. E. and Watson, H. A., Proc. IEEE, 71(5), 640 (1983).Google Scholar
[7]Lischner, D. J. and Celler, G. K. in: Laser and Electron Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., eds. (North Holland, NY 1982) p. 759.Google Scholar
[8]Seidel, T. E. in: VLSI Technology, Sze, S. M., ed. (McGraw-Hill, New York 1983) p. 219.Google Scholar
[9]Sze, S. M., Physics of Semiconductor Devices, 2nd Edition (John Wiley & Sons, New York, 1981).Google Scholar
[10]Lam, H. W., Tasch, A. F. Jr., Holloway, T. C., Lee, K. F. and Gibbons, J. F., IEEE Electron Device Lett., EDL–1 (6), 99 (1980).Google Scholar
[11]Kugimiya, K., Fuse, G., Akiyama, S. and Nishikawa, A., IEEE Electron Device Lett., EDL–3(9), 270 (1982).Google Scholar
[12]Nishimura, T., Akasaka, Y. and Nakata, H., Appl. Phys. Lett., 42(1), 102 (1983).Google Scholar
[13]Ohmura, Y., Shibata, K., Inoue, T., Yoshii, T. and Horiike, Y., IEEE Electron Device Lett., EDL–4(3), 57 (1983).Google Scholar
[14]Zimmer, G., Vogt, H., Neubert, E. and Staks, P., Device Research Conf.,University of Vermont,June 1983.Google Scholar