Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T13:51:20.326Z Has data issue: false hasContentIssue false

Characterisation of concrete, mortar and calcium silicate hydrated phases (CSH) and thorium retention analyses by ion beam techniques.

Published online by Cambridge University Press:  27 March 2012

Ursula Alonso
Affiliation:
CIEMAT, Avda. Complutense 40, Madrid 28040, SPAIN
Tiziana Missana
Affiliation:
CIEMAT, Avda. Complutense 40, Madrid 28040, SPAIN
Miguel Garcia-Gutierrez
Affiliation:
CIEMAT, Avda. Complutense 40, Madrid 28040, SPAIN
Henar Rojo
Affiliation:
CIEMAT, Avda. Complutense 40, Madrid 28040, SPAIN
Alessandro Patelli
Affiliation:
CIVEN, Via delle Industrie 5, Venezia-Marghera 30175, ITALY
Valentino Rigato
Affiliation:
LNL-INFN, Viale dell’ Università 2, Legnaro-Padova 35020, ITALY
Daniele Ceccato
Affiliation:
LNL-INFN, Viale dell’ Università 2, Legnaro-Padova 35020, ITALY
Get access

Abstract

Cement-based materials, like concrete and mortar, are widely used in radioactive waste repositories. A deep characterization of these heterogeneous materials, and of their main phases, is necessary to evaluate their capability of retaining critical radionuclides (RN).

In this study, the ion beam technique micro- Particle Induced X- Ray Emission (μPIXE) is used to characterize the concrete and mortar used in the Spanish low level waste repository. Two calcium silicate hydrate (CSH) phases with different Ca/Si ratio are also studied, because they are known to be amongst the most relevant phases, formed upon cement hydration, that retain RN. The retention of thorium on the above mention materials, as relevant tetravalent actinide, is also analyzed. Results are compared with Scanning Electron Microscopy- Energy Dispersive X-Ray Spectroscopy (SEM-EDX) analyses.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Andrade, C., Martinez, I., Castellote, M., Zuloaga, P.. J. of Nucl. Mat. 358 8295 (2006).10.1016/j.jnucmat.2006.06.015Google Scholar
2. Glasser, F.P.. Mat. Res. Soc. Symp. Proc., 713 (2002) JJ9.1.112.10.1557/PROC-713-JJ9.1Google Scholar
3. Glasser, F.. Mineralogical Magazine, 65 (2001) 621633.10.1180/002646101317018442Google Scholar
4. Glasser, F.P.. In: Handbook of advanced radioactive waste conditioning technologies , Edited by Ojovan, M I. Pp. 67135, Woodhead, Oxford (2011).10.1533/9780857090959.1.67Google Scholar
5. Pointeau, I., I. (2000). Thèse, Université de Reims Champagne-Ardenne. Collection Les Rapports, Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), France.Google Scholar
6. Johansson, S.A.E., Campbell, J.L., Malmqvist, K.G.E., Chemical Analysis, a series of monographs on analytical chemistry and its applications , John Wiley& Sons, Ltd, 1995.Google Scholar
7. Alonso, U., Missana, T., García-Gutiérrez, M., Patelli, A., Albarran, N., Lopez-Torrubia, T., Rigato, V.. In Scientific Basis For Nuclear Waste Management XXXII. Mat. Res. Symp. Proc . Vol. 1124. N 1124-Q05-08, 339344. MRS Warrendale, PA, USA (2009).Google Scholar
8. García-Gutiérrez, M., Alonso de los Ríos, U., Missana, T., Mingarro, M., Granizo, N., Grivé, M., Gaona, X., Colàs, C., Duro, L., Bruno, J.. Technical Publication ENRESA PT-02/2007, 180 pp. ENRESA, Madrid, Spain (2007).Google Scholar
9. Ceccato, D.. Nucl. Inst. and Meth.. in Phys. Res. B 267 (2009) 20772079.10.1016/j.nimb.2009.03.034Google Scholar
10. Maxwell, J.A., Teesdale, W., Campbell, J.L.. Nucl. Inst. Meth. Phys. Res. B 95 (1995) 407.10.1016/0168-583X(94)00540-0Google Scholar