Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T12:33:21.289Z Has data issue: false hasContentIssue false

Changes in Optical Properties of GaAsN During Annealing

Published online by Cambridge University Press:  01 February 2011

Ting Liu
Affiliation:
tliu@mix.wvu.edu, West Virginia University, ccnb, Morgantown, WV, 26506, United States
Sandeep Chandril
Affiliation:
schandri@mix.wvu.edu, West Virginia University, Physics Department, United States
Eric D. Schires
Affiliation:
fluidillusion@yahoo.com, West Virginia University, Physics Department, United States
Nianqiang Wu
Affiliation:
nick.wu@mail.wvu.edu, West Virginia University, Department of Mechanical and Aerospace Engineering, United States
Xinqi Chen
Affiliation:
xchen@northwestern.edu, Northwestern University, NUANCE Center, United States
Dimitris Korakakis
Affiliation:
Dimitris.Korakakis@mail.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, United States
Thomas H. Myers
Affiliation:
Thomas.Myers@mail.wvu.edu, West Virginia University, Physics Department, United States
Get access

Abstract

GaAs1−xNx layers and quantum dot-like structures were grown on (100) GaAs substrates by molecular beam epitaxy. The dependence of photoluminescence emission spectra on annealing temperature is consistent with literature at lower temperatures but after annealing at 750 °C a net red-shift is consistently observed. X-ray photoelectron spectroscopy measurements indicate that for different annealing times and temperatures, the nitrogen and arsenic surface concentrations changed compared to that of as-grown samples, specifically arsenic is lost from the material. Raman measurements are consistent with the trends in photoluminescence and also suggest the loss of arsenic occurs at higher annealing temperatures in both samples capped with GaAs and uncapped samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Buyanova, I. A., Pozina, G., Hai, P. N., Thinh, N. Q., Bergman, J. P. and Chen, W. M., Appl. Phys. Lett. 77, 2325 (2000)10.1063/1.1315632Google Scholar
2. Bi, W. G. and Tu, C. W., Appl. Phys. Lett. 70, 1608 (1997)Google Scholar
3. Weyers, M., Sato, M. and Ando, H., Jpn. J. Appl. Phys. 31, L853-L855 (1992)Google Scholar
4. Uesugi, K., Morooka, N. and Suemune, I., Appl. Phys. Lett. 74, 1254 (1999)10.1063/1.123516Google Scholar
5. Buyenova, I. A., Chen, W. M., Pozina, G., Bergman, J. P. and Monemar, B., Appl. Phys. Lett. 75, 501 (1999)Google Scholar
6. Zhang, X. Q., Ganapathy, S., Suemune, I., Kumano, H. and Uesugi, K., Appl. Phys. Lett. 83, 4524 (2003)Google Scholar
7. Gannapathy, S., Zhang, X. Q., Suemune, I., Uesugi, K., Kumano, H., Kim, B. J. and Seong, T. Y., Jpn. J. of Appl. Phys., Part 1 42, 5598 (2003)Google Scholar
8. Loke, W.K., Yoon, S. F., Wang, S. Z., Ng, T. K. and Fan, W. J., J. Appl. Phys. 91, 4900 (2002)Google Scholar
9. Spruytte, S. G., Coldren, C. W. and Harris, J. S., J. Appl. Phys. 89, 4401 (2001)Google Scholar
10. Toivonen, J., Hakkarainen, T., Sopanen, M. and Lipsanen, H., Journal of Crystal Growth 221, 456460 (2000)10.1016/S0022-0248(00)00740-5Google Scholar
11. Mintairov, A. M., Blagnov, P. A., Melehin, V. G. and Faleev, N. N., Phys. Rev. B 56, 15836 (1997)10.1103/PhysRevB.56.15836Google Scholar
12. Gwo, S., Huang, S. Y. and Yang, T.R., Phys. Rev. B 64, 113312 (2001)Google Scholar