Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-15T20:19:50.762Z Has data issue: false hasContentIssue false

CH4 :H2 :Ar rf/ECR Plasma Etching of GaAs and InP

Published online by Cambridge University Press:  16 February 2011

Victor. J. Law
Affiliation:
Cavendish Laboratory, Madingley Rd, Cambridge, CB3 OHE, UK.
S. G. Ingram
Affiliation:
Also at GEC-Marconi Ltd. Hirst Research Centre, East Lane Wembley, Middlesex HA9 7PP, UK
G. A. C. Jones
Affiliation:
Cavendish Laboratory, Madingley Rd, Cambridge, CB3 OHE, UK.
R. C. Grimwood
Affiliation:
Oxford Plasma Technology, Yatton, Bristol, Avon, BS19 4AP, UK.
H. Royal
Affiliation:
Oxford Plasma Technology, Yatton, Bristol, Avon, BS19 4AP, UK.
Get access

Abstract

A comparative study of CH4 :H2 , and CH4 :H2 :Ar rf-plasma and microwave electron cyclotron resonance (ECR) plasma etching of GaAs and InP is presented. The study is in two parts;

(i) Kinetic studies of GaAs and InP etch rates as a function of the constituent gas flow rates, applied rf and microwave powers, substrate temperature and position. The results indicate that CH4 :H2 :Ar ECR etching of GaAs is 10× more efficient in the utilisation of the CH4 precursor gas than rf-plasmas. However, the absolute etch rates are lower (70 nm min−1 for rf and 25 nm min−1 for rf biassed ECR-plasmas).The effect of etching conditions on InP morphology is also examined.

(ii) The study of electrical “damage” in GaAs/AlGaAs high electron mobility transistor (HEMT) Hall bar structures, was investigated by ECR-plasma etching off the top GaAs capping layer. Results indicate that ECR-plasma etching with an rf-bias between 0V and −30V does not significantly effect the electrical characteristics of such devices at 300K, with some degredation at 1.2 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Niggebrügge, U., Klugg, M. & Garus, G., GaAs and related compounds (Inst. Phys. Conf. Ser. 79, Karuizawa, Japan. (1985) pp. 367373.Google Scholar
[2] Cheung, R., Thoms, S., Beaumont, S.P., Doughty, G., Law, V.J., and Wilkinson, C.D.W., Electron. Lett., 23, 857 (1987).Google Scholar
[3] Law, V.J., Jones, G.A.C., Peacock, D.C., Ritchie, D., & Frost, J.E.F.. J. Vac. Sci. Technol. B7 (6) 1479 (1989).Google Scholar
[4] Matsui, T., Sugimoto, H., Ohishi, T., and Ogata, H.. Electron Lett. 24 798 (1988).Google Scholar
[5] Pearton, S.J., Chakrabarti, U.K., & Hobson, W.S.. J.Appl. Phys. 66, 2061 (1989).Google Scholar
[6] Law, V.J., Jones, G.A.C., & Tewordt, M.. Semicond. Sci. Technol. 5, 1001 (1990).Google Scholar
[7] Law, V.J., Ingram, S.G., Tewordt, M. & Jones, G.A.C.. Semicond. Sci. Technol. 6, 411 (1991).Google Scholar
[8] Constantine, C., Johnson, D., Pearton, S.J., Charkrabarti, U.K., Emerson, A.B., Hobson, W.S., & Kinsella, A.P.. J. Vac. Sci. Technol. B8, 156 (1990).Google Scholar
[9] Tewordt, M., Law, V.J., Kelly, M.J., Newbury, R., Pepper, M., Peacock, D.C., Frost, J.E.F., Ritchie, D., and Jones, G.A.C.. J. Phys:Condens. Matter 2, 8969 (1990).Google Scholar
[10] Matthews, P., Kelly, M.J., Law, V.J., Hasko, D.G., Pepper, M., Ahmed, H., Peacock, D.C., Frost, J.E.F., Ritchie, D.A., and Jones, G.A.C.. Electron. Lett. 26, 862 (1990).Google Scholar
[11] Matthews, P., Kelly, M.J., Law, V.J., Hasko, D.G., Pepper, M., Stobbs, W.M., Ahmed, H., Peacock, D.C., Frost, J.E.F., Ritchie, D.A., and Jones, G.A.C.. Phys. Rev. B42, 11415 (1990).Google Scholar
[12] Rudoplh, R.N., & Moore, J.H.. Plasma. Chem. & Plasma. Proc. 10, 451 (1990).Google Scholar
[13] Matsuo, S., and Kiuchi, M.. Jap. J. Appl. Phys. 22, L210 (1983).Google Scholar