Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T01:02:15.019Z Has data issue: false hasContentIssue false

Cesium State, Thermal Evolution In Csc24

Published online by Cambridge University Press:  15 February 2011

H. Estrade-Szwarckopf
Affiliation:
crsoci-Cnrs, 45045 Orleans Cedex
J. Conard
Affiliation:
crsoci-Cnrs, 45045 Orleans Cedex
P. Lauginie
Affiliation:
crsoci-Cnrs, 45045 Orleans Cedex
J. Van Der Klink
Affiliation:
Institut De Physique Expérimentale, EPFL, CH-1015 Lausanne
P. Lagrange
Affiliation:
BP.239, 54506 Vandoeuvre
D. Guerard
Affiliation:
BP.239, 54506 Vandoeuvre
F. Rousseauxl
Affiliation:
BP.239, 54506 Vandoeuvre
L.C.M.A. Nancy
Affiliation:
BP.239, 54506 Vandoeuvre
A. Maaroufi
Affiliation:
C.R.P.P. Université de Bordeaux I, 33405 Talence
G. Hermann
Affiliation:
Bruker Spectrospin, 67160 Wissembourg
Get access

Abstract

By 133Cs and 13C NMR, EPR, susceptibility anisotropy and X-Ray diffraction,we studied the thermal evolution of Cs24 from 100 to 500 K. A smooth transition is observed near 300 K which can be interpreted in structural and electronic terms: at lower temperatures, the Cs atoms are located in a disordered manner on graphitic hexagonal sites and are almost completely ionized; in the high temperature state, the Cs atoms are completely disordered relatively to the graphitic lattice and their electrons are at least partly relocalized on the metallic s-function.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parry, G. S., Mat. Sc. and Eng. 31, 99106 (1977)Google Scholar
2. Clarke, R., Caswell, N., Solin, S. A. and Horn, P. M., Phys. Rev. Letters, 43, 20182022 (1979).CrossRefGoogle Scholar
3. Estrade-Szwarckopf, H., Conard, J., Lauginie, P., Van der Klink, J., Guérard, D. and Lagrange, P., in : Physics of Intercalation Compounds, Solid State Science, 38, 274279 (1981).Google Scholar
4. Carver, G. P., Phys. Rev. B., 2, 22842295 (1970).Google Scholar
5. Roth, G. and Lüders, K., see ref. (3), 150–155.Google Scholar
6. Mizutani, U., Suganuma, M. and Kondow, T., see ref. (3), 280.Google Scholar
7. Pflüger, P., Oelhafen, P., Küinzi, H. U., Jeker, R., Hauser, E., Ackermann, K. P., Muller, M. and GüIntherodt, H. J., Physica 99B, 395400 (1980).Google Scholar
8. Fischer, J. E. in : Intercalated Layered Materials, Ed. F. A. Lévy, D. Reidel, Publ. Comp., 506 (1979).Google Scholar
9. Naiki, I. and Yamada, Y., J. Phys. Soc., Japan, 51, 257264 (1982).Google Scholar
10. Nixon, D. E. and Parry, G. S., Brit. J. Appl. Phys. (J. Phys. D.),Ser.2, 1, 291298 (1968).Google Scholar
11. Di Salvo, F. J. and Fischer, J. E. Sol. St. Com., 28, 7174 (1978).CrossRefGoogle Scholar
12. Di Salvo, F. J., Safran, S. A., Haddon, R. C., Waszcak, J. V. and Fischer, J. E., Phys. Rev. B, 20, 4883 (1979).CrossRefGoogle Scholar
13. Lauginie, P., Estrade, H., Conard, J., Guérard, D., Lagrange, P. and ElMakrini, M., Physica 99 B, 514–520 (1980).Google Scholar
14. Conard, J., Lauginie, P., Estrade-Szwarckopf, H., Hermann, G., Guérard, D. and Lagrange, P., Physica 105 B, 285–289 (1981).Google Scholar
15. Unpublished results from Dworkin, A., who is gratefully acknowledged.Google Scholar