Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T01:43:26.579Z Has data issue: false hasContentIssue false

Cellular Automata Simulations of Thermal Transport Properties of Thin-Film Polymer/CNTs Nano-Composites for Improved Design

Published online by Cambridge University Press:  28 July 2014

P. Kalakonda
Affiliation:
Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
A. Casey
Affiliation:
Department of Natural Sciences - Physics, Assumption College, Worcester, MA, 01609, USA
G. S. Iannacchione
Affiliation:
Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
G. Y. Georgiev
Affiliation:
Department of Natural Sciences - Physics, Assumption College, Worcester, MA, 01609, USA Department of Physics, Tufts University, Medford, MA, 02155, USA
Y. Cabrera
Affiliation:
Department of Physics, Tufts University, Medford, MA, 02155, USA
R. Judith
Affiliation:
Department of Physics, Tufts University, Medford, MA, 02155, USA
P. Cebe
Affiliation:
Department of Physics, Tufts University, Medford, MA, 02155, USA
Get access

Abstract

A computational algorithm has been developed to simulate the transport properties of oriented and un-oriented thin film nanocomposites of isotactic Polypropylene (iPP) and carbon nanotubes (CNT) with increasing CNT concentration. Our goal is to be able to design materials with optimal properties using these simulations. We use a cellular automata approach in a Matlab 3-D array environment. The percolation threshold is reproduced in the simulations, matching experimental data. Upon percolation, the thermal transport in the films increases sharply, due to the large difference in the thermal conductivities of the CNTs and the polymer. To verify the simulation, the thin-film samples were sheared in the melt at 200C at 1 Hz in a Linkan microscope shearing hot stage. The thermal conductivity measurements were performed on the same cell arrangement with the transport perpendicular to the thin-film plane using a DC method. The thermal conductivity is higher for the un-sheared as compared to the sheared samples. Our cellular automata simulations provide information about the microstructuremacroscopic property relation in the thin film nanocomposites and can be extended to simulations of other important materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Georgiev, G., McIntyre, M. B., Judith, R., Gombos, E. A., Cebe, P., in Symposium Artificially Induced Crystalline Alignment Thin Films and Nanostructures (Cambridge Journal Online, Cambridge University Press, UK, Materials Research Society Symposium Proceeding, 1308, Warrendale, PA, 2011), DD0709, DOI:10.1557/opl.2011.157, mrsf10-1308-dd07-09.Google Scholar
Chang, C.Y., Phillips, E. M., Liang, R., Tozer, S. W., Wang, B., Zhang, C., Chiu, H.T., J. Appl. Polym. Sci. 10, 38209 (2013)Google Scholar
Bouchard, J., Cayla, A., Devaux, E., Campagne, C., Composites Science and Technology, 86, 177 (2013)CrossRefGoogle Scholar
Kalakonda, P., Gombos, E. A., Hoonjan, G. S., Georgiev, G.Y., Iannacchione, G. S. and Cebe, P., in Symposium DD Transport Properties in Polymer Nanocomposites II, (Cambridge Journals Online, Cambridge University Press, UK, Materials Research Society Symposium Proceeding, Volume 1410, Warrendale, PA, 2012), Paper# DD1.1; Control ID: 1130053; DOI: 10.1557/opl.2012.817. mrsf11-1410-dd05-06 Google Scholar
Kalakonda, P., Sarkar, S., Gombos, E. A., Georgiev, G.Y., Iannacchione, G.S. and Cebe, P., in Symposium V Multifunctional Polymer-based Materials, (Cambridge Journals Online, Cambridge University Press, UK, Materials Research Society Symposium Proceeding, Volume 1403, Warrendale, PA, 2012), Paper# V12.13; Control ID: 1160868; DOI: 10.1557/opl.2012.371. mrsf11-1403-v12-13 Google Scholar
Kalakonda, P., Iannacchione, G. S., Daly, M., Georgiev, G. Y, Cabrera, Y., Judith, R., Cebe, P., J. Appl. Polym. Sci. 10, 39204(2013)Google Scholar
Gojny, F., Wichmann, M., Fiedler, B., Kinloch, I., Bauhofer, W., Windle, A., Schulte, K., Polymer 47 (6), 2036 (2006)CrossRefGoogle Scholar
Li, L., Jeu, W., Faraday Discuss. (128), 299319 (2005).CrossRefGoogle Scholar
Georgiev, G., Cabrera, Y., Wielgus, L., Iftikhar, Z., Mattera, M., Gati, P., Potter, A., Cebe, P., in Artificially Induced Grain Alignment in Thin Films, edited by Matias, V., Hammond, R., Moon, S.-H., Hühne, R. (Mater. Res. Soc. Symp. Proc. 1150, Warrendale, PA, 2009), RR04-16, p. 185190.Google Scholar
Kalakonda, Parvathalu, Daly, Michael, Xu, Kaikai, Cabrera, Yaniel, Judith, Robert, Iannacchione, Germano S., Georgiev, Georgi Y. and Cebe, Peggy, Structure-Electrical Transport Property Relationship of Anisotropic iPP/CNT Films, (Cambridge Journals Online, Cambridge University Press, UK, Materials Research Society Symposium Proceeding, Volume 1499, Warrendale, PA, 2013),DOI: 10.1557/opl.2013.445 Google Scholar
Song, W., Kinloch, I.A., Windle, A.H., Science (302), 1363 (2003).CrossRefGoogle Scholar
Dawid, A., Gwizdała, W., Journal of Non-Crystalline Solids 355, 13021306 (2009).CrossRefGoogle Scholar
Gwizdała, W., Górny, K., Gburski, Z., Journal of Molecular Structure 887, 148151 (2008).CrossRefGoogle Scholar
Georgiev, G., Gombos, E. A., McIntyre, M., Mattera, M., Gati, P., Cabrera, Y., Cebe, P., in Nanoscale Pattern Formation, edited by Chason, E., Cuerno, R., Gray, J., Heinig, K.H., (Mater. Res. Soc. Symp. Proc. 1228E, Warrendale, PA, 2010), KK1181.Google Scholar
Kim, I., Tannenbaum, A., Tannenbaum, R., Carbon 49(1), 5461 (2011).CrossRefGoogle ScholarPubMed