Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T02:48:42.658Z Has data issue: false hasContentIssue false

CdS and ZnS Nanoparticles Growth in Different Reaction Media: Synthesis and Characterization

Published online by Cambridge University Press:  15 February 2011

F. Antolini
Affiliation:
ENEA, UTS-MAT, CR Brindisi, Strada Statale Appia, 72100 Brindisi, Italy present address: UTS-MAT, CR Faenza, Via Ravegnana 186,48018 Faenza, Italy
E. Trave
Affiliation:
Dip. Fisica “G. Galilei”, Universitá di Padova, via Marzolo 8, 35131 Padova, Italy
L. Mirenghi
Affiliation:
ENEA, UTS-MAT, CR Brindisi, Strada Statale Appia, 72100 Brindisi, Italy
M. Re
Affiliation:
ENEA, UTS-MAT, CR Brindisi, Strada Statale Appia, 72100 Brindisi, Italy
G. Mattei
Affiliation:
Dip. Fisica “G. Galilei”, Universitá di Padova, via Marzolo 8, 35131 Padova, Italy
L. Tapfer
Affiliation:
ENEA, UTS-MAT, CR Brindisi, Strada Statale Appia, 72100 Brindisi, Italy
P. Mazzoldi
Affiliation:
Dip. Fisica “G. Galilei”, Universitá di Padova, via Marzolo 8, 35131 Padova, Italy
Get access

Abstract

In this work we report on the growth of cadmium sulfide and zinc sulfide nanocrystals by thermolysis, starting from a metal thiolate in a (i) solventless way, (ii) by a novel route in tryoctilphosphine oxide (TOPO), and (iii) by direct synthesis in a polystyrene matrix. The x-ray diffraction (XRD) and transmission electron microscopy (TEM) show that the nanocrystals fabricated by the different methods are under optimized growth conditions single crystals of zincblende structure and of regular spherical shape. The average size was estimated to be between 2.0-3.0 nm with a size dispersion that depends on the synthesis route and is in the range between 10% and 20%. The XPS results indicate that for the nanoparticles obtained via solventless strategy the sulfur is present both as bonded to the metal atom and to the organic residue, while in the TOPO synthesized nanoparticles the sulfur signal has only one component associated to the metal-sulfide bond. The photoluminescence spectroscopy (PL) analysis of CdS crystals clearly evidences the typical emissions of nanosized zincblende CdS monocrystalline particles. Furthermore, the optical spectroscopy data indicate that the size distribution of the Cdsulfide - TOPO nanoparticles seems to be generally larger than that ones grown directly in polymer matrix. For all the CdS samples, the metal-sulfide nanocrystals exhibit a trap-related radiative transition at about 2eV that can be attributed to the hole-electron recombination at particle surface defect-center.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Resferences

1. Hikmet, R.A.M., Talapin, V., Weller, H., J. Appl. Phys. 93, 3509 (2003)Google Scholar
2. Huynh, W.U., Dittmer, J.J., Alvisatos, A.P., Science 295, 2425 (2002)Google Scholar
3. Weller, H. Phil. Trans. R. Soc. Lond. A 361, 229 (2003)Google Scholar
4. Murray, C.B., Kagan, C.R., Bawendi, M.G., Annu. Rev. Mater. Sci. 30, 545 (2000).Google Scholar
5. Crouch, D., Norager, S., O'Brien, P., Park, J.H., Pickett, N. Phil. Trans. R. Soc. Lond. A 361, 297 (2003).Google Scholar
6. Rees, W.S., Kräuter, G., J. Mater. Res. 11, 3005 (1996).Google Scholar
7. Larsen, T.H., Sigman, M., Ghazelbash, A., Doty, R.C., Korgel, B.A., J. Am. Chem. Soc. 125, 5638 (2003).Google Scholar
8. Luccio, T. Di, Nickel, B., Antolini, F., Pentimalli, M., Tapfer, L., Mat. Res. Soc. Symp. Proc. vol. 847, EE13.22.1 (2005).Google Scholar
9. Carotenuto, G., Martorana, B., Perlo, P., Nicolais, L., J. Mat. Chem. 13, 2927 (2003).Google Scholar
10. Antolini, F., Di, T. Luccio, M. Re, Tapfer, L., Cryst. Res. Tech., in press.Google Scholar
11. Scher, E.C., Manna, L., Alvisatos, A.P., Phil. Trans. R. Soc. A 361, 241 (2003)Google Scholar
12. Döllefeld, H., Hoppe, K., Kolny, J., Schilling, K., Weller, H., Eychmüller, A., Phys. Chem. Chem. Phys. 4, 4747 (2002).Google Scholar
13. Guinier, A., X-Ray diffraction in crystals, imperfect crystals, and amorphous bodies. W.H., Freeman, San Francisco (1963).Google Scholar
14. Matsuura, D., Kanemitsu, Y., Kushida, T., White, C.W., Budai, J.D., Meldrum, A., Appl. Phys. Lett. 77, 2289 (2000).Google Scholar
15. Kanemitsu, Y., Ando, M., Matsuura, D., Kushida, T., White, C.W., J. Luminesc. 94-95, 235 (2001).Google Scholar
16. Chestnoy, N., Harris, T.D., Hull, R., Brus, L.E., J. Phys. Chem. 90, 3393 (1986).Google Scholar
17. Nanda, K. K., Sarangi, S.N., Mohanty, S., Sahu, S.N., Thin Solid Films 322, 21 (1998).Google Scholar
18. Liu, Bing, Xu, G.Q., Gan, L.M., Chew, C.H., Li, W.S., Shen, Z.X., J. Appl. Phys. 89, 1059 (2001).Google Scholar
19. Dijken, A. van, Janssen, A.H., Smitsmans, M.H.P., Vanmaekelbergh, D., Meijerink, A.,. Chem. Mater. 10, 3513 (1998).Google Scholar
20. Wuister, S. F., Meijerink, A., J. Luminesc. 105, 35 (2003).Google Scholar