Skip to main content Accessibility help
×
Home

Cavities for Intersubband Transitions

  • V. Berger (a1), J-Y Duboz (a1), E. Ducloux (a1), F. Lafon (a1), I. Pavel (a1), P. Boucaud (a2), O. Gauthier-Lafaye (a2), F. Julien (a2), A. Tchelnokov (a2) and R. Planel (a3)...

Abstract

The different possible geometries for intersubband transitions in microcavities are discussed. A consequence of the selection rule governing intersubband transition is the vanishing interaction with the electromagnetic field inside a usual vertical cavity. The geometry of vertical planar cavities which has been used extensively with interband transitions is therefore useless in the case of intersubband transitions. Different solutions are reviewed to overcome this problem. The breakdown of the selection rule in a vertical cavity is first discussed. This can be done with the use of vertical quantum wells, or thanks to intracavity diffraction gratings. Second, the use of in plane cavities is discussed. Two solutions are here envisaged: Whispering gallery modes in microdisk cavities, and efficient etched air/GaAs Bragg mirrors. Concerning the latter attractive solution, the losses by diffraction into the substrate are evaluated theoretically and experimentally. The solution of the Maxwell equations by a finite element method in this three dimensional system shows the great importance of diffraction. These results are confirmed by waveguided Fourier transform spectroscopy. To overcome this difficulty, we propose the use of lower refractive index substrates, such as oxidized AlAs.

Copyright

References

Hide All
[1] Ünlü, M. S., J. Appl. Phys. 78, 607 (1995).
[2] Hunt, N. and Schubert, E. F., in Microcavities and Photonic bandgaps: Physics and Applications, edited by Rarity, J. and Weisbuch, C. (Kluwer Academic Publishers, 1996).
[3] Jewell, J. L. et al., IEEE J. of Quant. Elee. 27, 1332 (1991).
[4] Jewell, J. L., Harbison, J. P., and Scherer, A., Scientific American November 91, 56 (1991).
[5] Hadji, E., Bleuse, J., Magnea, N., and Pautrat, J., Appl. Phys. Lett. 68, 2480 (1996).
[6] Yan, R. H., Simes, R. J., and Coldren, L. A., IEEE Photonics Tech. Lett. 1, 273 (1989).
[7] Whitehead, M., Rivers, A., and Parry, G., El. Lett. 26, 1588 (1990).
[8] Berman, P., Cavity Quantum Electrodynamics (Academic Press, Boston, 1994).
[9] Haroche, S. and Raimond, J., in Advances in Atomic and Molecular Physics Vol XX, edited by Bates, D. and Bederson, B. (Academic Press, New York, 1985).
[10] Microcavities and Photonic Band Gaps: Physics and Applications, edited by Rarity, J. and Weisb'uch, B. (Kluwer Academic Publishers, Dordrecht, 1996).
[11] Hayashi, Y. et al., El. Lett. 31, 560 (1995).
[12] Yang, G. M., MacDougal, M. H., and Dapkus, P., Electron. Lett. 31, 886 (1995).
[13] Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y., Phys. Rev. Lett. 69, 3314 (1992).
[14] Houdré, R. et al., Phys. Rev. Lett. 73, 2043 (1994).
[15] McCall, S. L. et al., Appl. Phys. Lett. 60, 289 (1992).
[16] Yamamoto, Y. and Slusher, R. E., Phys. Today june 93, 66 (1993).
[17] Mohideen, U. et al., Appl. Phys. Lett. 64, 1911 (1994).
[18] Faist, J. et al., Appl. Phys. Lett. 69, 2456 (1996).
[19] Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals (Princeton University Press, Princeton, 1995).
[20] Yablonovitch, E., Nature 383, 665 (1996).
[21] Rosencher, E., Vinter, B., and Levine, B., Intersubband Transitions in Quantum Wells (Plenum, New York, 1992).
[22] Liu, H. C., Levine, B. F., and Andersson, J. Y., Quantum Well Intersubband Transition Physics and Devices (Plenum, Dordrecht, 1994).
[23] Levine, B. F., J. of Appl. Phys. 74, Rl (1993).
[24] Faist, J. et al., Science 264, 553 (1994).
[25] Sirtori, C., private communication.
[26] Gauthier-Lafaye, O. et al., submitted to Phys. Rev. Lett.
[27] Walther, M. et al., Appl. Phys. Lett. 60, 521 (1991).
[28] Vermeire, G. et al., J. of Crystal Growth 124, 513 (1992).
[29] Berger, V., Vermeire, G., Demeester, P., and Weisbuch, C., Appl. Phys. Lett. 66, 218 (1995).
[30] Rosencher, E. and Bois, P., Phys. Rev. B 44, 11315 (1991).
[31] Sirtori, C., Capasso, F., Sivco, D. L., and Cho, A. Y., Appl. Phys. Lett. 68, 1010 (1992).
[32] Karunasiri, R. P., Mii, Y. J., and Wang, K. L., IEEE Electron Device Lett. 11, 227 (1990).
[33] Berger, V. et al., Appl. Phys. Lett. 61, 1898 (1992).
[34] Biasiol, G. et al., Appl. Phys. Lett. 69, 2710 (1996).
[35] Martinet, E. and Kapon, E., private communication.
[36] Berger, V., Vodjdani, N., Delacourt, D., and Schnell, J., Appl. Phys. Lett. 68, 1904 (1996).
[37] Anderson, J. Y. and Lundqvist, L., J. Appl. Phys. 71, 3600 (1991).
[38] Duboz, J. Y., J. of Appl. Phys. to be published (1996).
[39] Duboz, J. Y. et al., Appl. Phys. Lett, to be published (1997).
[40] Nagle, J., private communication.
[41] Duboz, J. Y., in this volume.
[42] Stanley, R. P. et al., Appl. Phys. Lett. 65, 1883 (1994).
[43] Stanley, R. P. et al., in Microcavities and Photonic bandgaps: Physics and Applications, edited by Rarity, J. and Weisbuch, C. (Kluwer Academic Publishers, 1996).
[44] Slusher, R. E. et al., Appl. Phys. Lett. 63, 1310 (1993).
[45] Mohideen, U. and Slusher, R., in Microcavities and Photonic bandgaps: Physics and Applications, edited by Rarity, J. and Weisbuch, C. (Kluwer Academic Publishers, 1996).
[46] Chu, D. Y. et al., Appl. Phys. Lett. 65, 3167 (1994).
[47] Shin, K.-C. et al., IEEE Photon. Technol. Lett. 7, 1119 (1995).
[48] Baba, T. et al., in Int. Conf. Solid State Devices and Materials (Osaka, 1995).
[49] Espinolada, R. P. et al., Appl. Phys. Lett. 68, 241 (1996).
[50] Krauss, T. F. and Rue, R. M. D. L., Appl. Phys. Lett. 68, 1613 (1996).
[51] Born, M. and Wolf, E., Principle of Optics (Pergamon Press, Oxford, 1980).

Related content

Powered by UNSILO

Cavities for Intersubband Transitions

  • V. Berger (a1), J-Y Duboz (a1), E. Ducloux (a1), F. Lafon (a1), I. Pavel (a1), P. Boucaud (a2), O. Gauthier-Lafaye (a2), F. Julien (a2), A. Tchelnokov (a2) and R. Planel (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.