Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T17:37:10.630Z Has data issue: false hasContentIssue false

Cation Disorder Determined by MAS 27Al NMR in High Dose Neutron Irradiated Spinel

Published online by Cambridge University Press:  16 February 2011

Elizabeth A. Cooper
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, NM 87545
Craig D. Hughes
Affiliation:
Los Alamos National Laboratory, Chemical Science and Technology Division, Los Alamos, NM 87545
William L. Earl
Affiliation:
Los Alamos National Laboratory, Chemical Science and Technology Division, Los Alamos, NM 87545
Kurt E. Sickafus
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, NM 87545
Glenn W. Hollenberg
Affiliation:
Pacific Northwest Laboratories, Materials Science Department, Richland, WA 99352
Frank A. Garner
Affiliation:
Pacific Northwest Laboratories, Materials Science Department, Richland, WA 99352
Richard C. Bradt
Affiliation:
University of Alabama, Metallurgical and Materials Engineering, Tuscaloosa, Al 35487
Get access

Abstract

Spinel (MgAl2O4) single crystals which had been neutron irradiated at (nominally) 400 and 750°C to high doses (53-250 dpa) were examined using 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR). The sensitivity of this procedure to a specific cation (Al) residing in different crystallographic environments allowed us to determine the distribution of the Al between the tetrahedral and octahedral cation sites in the spinel structure. Our results indicate that the Al was distributed nearly equally over both cation sites in the spinel, resulting in a nearly inverse structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.see ref. 2 for a detailed list of references on pioneering work of Clinard, et al.;for example: Clinard, F.W. Jr, Hurley, G. F., and Hobbs, L.W., J. Nuci. Mater. 108/109 665670 (1982).Google Scholar
2. Sickafus, K. E., Larson, A. C., Yu, N., Nastasi, M., Hollenberg, G. W., Garner, F. A., and Bradt, R. C., J. NucI. Mater., in press (1995).Google Scholar
3. Gobbi, G. C., Christoffersen, R., Otten, M. T., Miner, B., Buseck, P. R., Kennedy, G. J., and Fyfe, C. A., Chem. Lett. 771–774 (1985).Google Scholar
4. Dupree, R., Lewis, M. H., and Smith, M. E., Philos. Mag. A 53, L17–L20, (1986).Google Scholar
5. Wood, B. J., Kirkpatrick, R. J., Montez, B., Am. Mineral. 71 9991006 (1986).Google Scholar
6. Millard, R. L., Peterson, R. C., and Hunter, B. K., Am. Mineral., 77, 4452 (1992).Google Scholar
7.Union Carbide Corporation, San Diego, CAGoogle Scholar
8. Garner, F. A., Hollenberg, G. W., Hobbs, F. D., Ryan, J. L., Li, Z., Black, C. A., and Bradt, R. C., J. Nucl. Mater., 212–215, 10871090 (1994).Google Scholar
9.for comments on the conversion of fluence to dpa, see ref. 2Google Scholar
10.Varian Unity 400 spectrometer, operating with a Sun workstationGoogle Scholar
11. Schmocker, U. and Waldner, F., J. Phys. C 9 L235237 (1976).Google Scholar
12. Sujata, K. and Mason, T. O., J. Amer. Ceram. Soc., 75 [3] 557–62 (1992).Google Scholar