Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T08:15:17.027Z Has data issue: false hasContentIssue false

Catalytic Materials by Design from Hybrid Organic-Inorganics

Published online by Cambridge University Press:  10 February 2011

Joël
Affiliation:
UPRESA 5076, Laboratorie de Chimie Organométallique, Ecole Nationale Supérieure de Chimie, 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 05, FRANCE.
J.E. Moreau
Affiliation:
UPRESA 5076, Laboratorie de Chimie Organométallique, Ecole Nationale Supérieure de Chimie, 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 05, FRANCE.
Michel Wong Chi Man
Affiliation:
UPRESA 5076, Laboratorie de Chimie Organométallique, Ecole Nationale Supérieure de Chimie, 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 05, FRANCE.
Get access

Abstract

The sol-gel processing of appropriated molecular precursors easily leads to a variety of hybrid organic-inorganic materials with intrinsic properties. This approach is increasingly becoming an interesting way to prepare heterogeneous catalysts. The paper will focus on the use of hybrids for the preparation of selective catalytic materials. Two examples of the use of hybrid polysilsesquioxanes polymers will be given. i) The tailoring of the pore structure of silicas, under mild reaction conditions, based on the temporary introduction of different organic substructures in the hybrid network of polysilsesquioxane gels will be discussed. ii) Also the preparation of new chiral hybrid supports for enantioselective catalysis will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brinker, C.J.., Scherer, G.W., Sol-Gel Science, Academic Press, London 1990 and references therein.Google Scholar
2 Sanchez, C., Ribot, F., New J.Chem., 18, 1007, (1994) and references therein.Google Scholar
3 Loy, D.A., Shea, K.J., Chem. Rev., 95, 1431, (1995) and references therein.10.1021/cr00037a013Google Scholar
4 Baney, R.H., Itoh, M., Sakakibara, A., Suzuki, T., Chem. Rev.. 95, 1409, (1995).10.1021/cr00037a012Google Scholar
5 Corriu, R.J.P., Leclercq, D., Angew. Chem. Int. Ed. Engl., 35, 1420, (1996) and references therein.Google Scholar
6 Pajonk, G.M., Appl. Catal., 72, 217, (1991) and references therein.Google Scholar
7 Cauqui, M.A., Rodriguez-Izquierdo, J.M., J. Non-Cryst. Solids, 147–148, 724, (1992).Google Scholar
8 Schubert, U., Amberg-Schwab, S., Breitscheidel, B., Chem. Mater., 1, 576, (1989) ; C. Egger, U. Schubert, Z. Naturforsch., 46b, 783, (1991) ; B. Breischeidel, J. Zieder, U. Schubert, Chem. Mater., 3, 559, (1991).Google Scholar
9 Schubert, U., Egger, C., Rose, K., Alt, C.., J. Mol. Catal., 55, 330, (1989); M. Capka, M.Czakoova, U. Schubert, Appl. Organometal. Chem., 7, 369, (1993); M. Capka, M. Czakoova, W. Urbaniak, U. Schubert, J. Mol. Catal., 7 4, 335, (1992).Google Scholar
10 Hardee, J.R., Tunney, S.E., Frye, J., Stille, J.K., J. Polym. Sci. Part A: Polym. Chem., 28, 3669, (1990).10.1002/pola.1990.080281313Google Scholar
11 Ferrari, C., Predieri, G., Tiripicchio, A., Chem. Mater., 4, 243, (1992).Google Scholar
12 Linder, E., Kemmler, M., Mayer, H.A., Chem. Ber., 125, 2385, (1992).Google Scholar
13 Hartley, F.R., Supported Metal Complexes, Reidel Publ. Cie, Dordrecht, (1985)Google Scholar
14 Schubert, U., New J. Chem., 18, 1049, (1994) and references therein.Google Scholar
15 Tour, J.M., Cooper, J.P., Pendalvar, S.L., Chem. Mater., 2, 3452, (1990)Google Scholar
16 Maier, W.F., Bohnen, F.M., Heilmann, J., Klein, S., Ko, M-C, Mark, M.F., Thorimbert, S., Tilgner, I.C., Wiedom, M., in Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials. Harrod, J.F. and Laine, R.M. Eds., Kluwer Academic Publishers, (1995), p 27 and references therein.10.1007/978-94-011-0337-4_2Google Scholar
17 Klein, S., Maier, W.F., Angew. Chem. Int. Ed. Engl., 35, 2230, (1996).Google Scholar
18 Maier, W.F., Martens, J.A., Klein, S., Heilmann, J., Parton, R., Vercruysse, K., Jacobs, P.A., Angew. Chem. Int. Ed. Engl., 35, 180, (1996).Google Scholar
19 Haggin, J., Chem. Eng. News, 30, 3, (1990) ; R. Landau, AICHE Symp. Ser., 9, 86 (1990) ;I. Dodgson, Stud. in Surf. Sci and catal., 78, 1, (1993)Google Scholar
20 Davis, M.E., Chen, C.Y., Burkett, S.L., Lobo, R.L., Mat. Res. Soc. Symp. Proc. 346, 831, (1994) and references therein.Google Scholar
21 Wulff, G., Angew. Chem. Int. Ed. Engl., 34, 1812, (1995) and references therein.Google Scholar
22 Davis, M.E., Katz, A., Ahmad, W.R., Chem. Mater., 8, 1820, (1996).10.1021/cm960019uGoogle Scholar
23 Raman, N.K., Anderson, M.T., Brinker, C.J., Chem. Mater., 8, 1682, (1996)10.1021/cm960138+Google Scholar
24 Saegusa, T., J. Makromol. Sci. Chem., A28, 817, (1991) ;T. Saegusa, Y. Chujo, Makromol. Chem., Makromol. Symp., 64, 1, (1992).10.1080/00222339108054061Google Scholar
25 Roger, C., Hampden-Smith, M.J., Schaeffer, D.W., Beaucage, G.B., J. Sol-Gel Sci.Tech., 2, 67, (1994) and references therein.Google Scholar
26 Chujo, Y., Matsuki, M., Kure, S., Saegusa, T., Yazuwa, Y., J.C.S. Chem. Comm., 635, (1994).Google Scholar
27 Shea, K.J., Loy, D.A., Webster, O.W., Chem. Mater., 1; 574, (1989) ; K.J. Shea, D.A. Loy, O.W. Webster, J. Am. Chem. Soc., 114, 6700, (1992).10.1021/cm00006a003Google Scholar
28 Corriu, R.J.P., Moreau, J.J.E., Thepot, P., Man, M. Wong Chi., Chem. Mater., 4, 1217, (1992).10.1021/cm00024a020Google Scholar
29 Loy, D.A., Buss, R.J., Assink, R.A., Shea, K.J., Oviatt, H.., Polym. Prep. Am. Chem. Soc. Div. Polym. Chem., 34, 244, (1993) ;D.A. Loy, K.J. Shea, U.S. Patent 5321102, (1994).Google Scholar
30 Corriu, R.J.P., Moreau, J.J.E., Thepot, P., Man, M. Wong Chi, Chem. Mater., 8, 100, (1996).Google Scholar
31 Chevalier, P., Corriu, R.J.P., Moreau, J.J.E., Man, M. Wong Chi, J. Sol-Gel Sci. Techn. 8, 603, (1997) ; P. Chevalier, R.J.P. Corriu, J.J.E. Moreau, M. Wong Chi Man, Fr. Patent. 2 728 572, (1996).Google Scholar
32 Corriu, R. J. P., Guerin, C., Moreau, J.J.E.. Topics in Stereochem., 15, 41, (1985). and references therein.Google Scholar
33 Kuwajima, T., Nakamura, E. ; Hashimoto, K., Tetrahedron, 39,975, (1983).10.1016/S0040-4020(01)88596-3Google Scholar
34 Brunauer, S. ;Emmett, P. H., Teller, E. J., J. Am. Chem. Soc., 60, 309, (1938).10.1021/ja01269a023Google Scholar
35 Barrett, E. P., Joyner, L. G., Halenda, P. P., J. Am. Chem. Soc., 73, 373, (1951).10.1021/ja01145a126Google Scholar
36 Blaser, H.U., Tetrahedron Asym., 2, 843, (1991) and references therein.10.1016/S0957-4166(00)82195-3Google Scholar
37 Larrow, J.F., Jacobsen, E.N., J. Org. Chem., 45, 1939, (1994).10.1021/jo00086a062Google Scholar
38 Gamez, P., Fache, F., Mangeney, P., Lemaire, M., Tetrahedron Leat., 34, 6897, (1993) P. Gamez, B. Dunjie, C. Pinel, M. Lemaire, Tetrahedron Lett., 36, 8779, (1995).10.1016/S0040-4039(00)91824-0Google Scholar
39 Adima, A., Moreau, J.J.E., Man, M. Wong Chi, J. Mater. Chem., 7, 2331, (1997).10.1039/a705458kGoogle Scholar