Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T01:01:41.748Z Has data issue: false hasContentIssue false

Catalytic Forming Gas Anneal on III-V/Ge MOS Systems

Published online by Cambridge University Press:  31 January 2011

Wei-E Wang
Affiliation:
weie.wang@intel.com
Han-Chung Lin
Affiliation:
dlin@imec.be, IMEC, Leuven, Belgium
Guy Brammertz
Affiliation:
Guy.Brammertz@imec.be, IMEC, leuven, Belgium
Annelies Delabie
Affiliation:
delabiea@imec.be, IMEC, leuven, Belgium
eddy simoen
Affiliation:
simoen@imec.be, IMEC, leuven, Belgium
Matty Caymax
Affiliation:
Matty.Caymax@imec.be, IMEC, leuven, Belgium
Marc Meuris
Affiliation:
Marc.Meuris@imec.be, IMEC, leuven, Belgium
Marc Heyns
Affiliation:
Heyns@imec.be, IMEC, leuven, Belgium
Get access

Abstract

Catalytic-FGA, a combination of the standard forming gas anneal with a catalytic metal gate, has been applied to study the hydrogen passivation of III-V/Ge MOS systems. Pd (or Pt) metal gate catalytically dissociates molecular hydrogen into atomic hydrogen atoms, which then diffuse through the dielectric layer and neutralize certain semiconductor/dielectric interfacial defects. MOS systems with various interfacial qualities, including lattice-matched (n/p) In0.53Ga0.47As/10nm ALD-Al2O3 (or ZrO2)/Pd capacitors, an undoped Ge/˜1nm GeO2/4nm ALD-Al2O3/Pt capacitor, and an nGe/8nm ALD-Al2O3/Pt capacitor are fabricated to evaluate the effectiveness of C-FGA.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Walle, C.G. Van de and Neugebauer, J., Nature, 423, 626 (2003).10.1038/nature01665Google Scholar
2 Pearton, S.J., Corbett, J.W., and Shi, T.S., Appl. Phys. A43, 153 (1987).10.1007/BF00615975Google Scholar
3 Johnson, N.M. and Walle, C.G. Van de, in Hydrogen in Semiconductor II, Semiconductor and Semimetals, vol. 61, edited by Nickel, N.H., Academic Press, N.Y., Ch.2, 1999.Google Scholar
4 Huard, V., Denais, M., and Parthasarathy, C., Microelectronics Reliability, 46, 1 (2006).10.1016/j.microrel.2005.02.001Google Scholar
5 Pavesi, L., in Properties of Aluminium Gallium Arsenide, edited by Adachi, S., IET, 1993.Google Scholar
6 Chuskey, M. and Haller, E. E., in Hydrogen in Semiconductor II, vol. 61, edited by Nickel, N.H., Academic Press, N.Y. Ch.9, 1999.Google Scholar
7 Pearton, S. J., J. Appl. Phys. 53, 4509 (1982).10.1063/1.331190Google Scholar
8 Chang, R. P. H. and Coleman, J. J., Appl. Phys. Lett. 32 (5), 332 (1978).10.1063/1.90040Google Scholar
9 Afanas'ev, V. V., Fedorenko, Y. G., and Stesmans, A., Appl. Phys. Lett. 87, 032107 (2005).10.1063/1.1947372Google Scholar
10 Weber, J. R., Janotti, A., Rinke, P., and Walle, C. G. Van de, Appl. Phys. Lett. 91, 142101 (2007).10.1063/1.2793184Google Scholar
11 Matsubara, H., Sasada, T., Takennaka, M., and Tagaki, S., Appl. Phys. Lett. 93, 032104 (2008).10.1063/1.2959731Google Scholar
12 Bellenger, F., Merckling, C., Penaud, J., Houssa, M., Caymax, M., Meuris, M., Meyer, K. De, and Heyns, M.M., ECS Trans. 16 (5), 411 (2008).10.1149/1.2981622Google Scholar
13 Seager, C. H., in Hydrogen in Semiconductors, vol. 34, edited by Pankove, J.I. and Johnson, N.M., Academic Press, Ch.2, 1991.10.1016/S0080-8784(08)62857-4Google Scholar
14 Lundström, I., Sensors and Actuators 1, 403 (1981).10.1016/0250-6874(81)80018-2Google Scholar
15 Eriksson, M., Salomonsson, A., and Lundström, I., J. Appl. Phys. 98, 034903 (2005).10.1063/1.1994941Google Scholar
16 Aspnes, D. E. and Heller, A., J. Vac. Sci. Technol. B1 (3), 602 (1983).10.1116/1.582606Google Scholar
17 Nicollian, E. H. and Brews, J. R., in MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, 1981.Google Scholar
18 Brammertz, G., Lin, H.-C., Martens, K., Mercier, D., Sioncke, S., Delabie, A., Wang, W.-E, Caymax, M., Meuris, M. and Heyns, M., Appl. Phys. Lett. 93, 183504 (2008).10.1063/1.3005172Google Scholar
19 Brammertz, G., Lin, H.C., Martens, K., Alian, A., Merckling, C., Penaud, J., Kohen, D., Wang, W.-E, Sioncke, S., Delabie, A., Meuris, M., Caymax, M., Heyns, M., ECS Transactions, 19 (5), 375 (2009).10.1149/1.3119560Google Scholar
20 Caymax, M., Brammertz, G., Delabie, A., Sioncke, S., Lin, H.-C., Scarozza, M., Pourtois, G., Wang, W.-E, Meuris, M. and Heyns, M., Microelectronic Engineering, 86, 1529 (2009).10.1016/j.mee.2009.03.090Google Scholar
21 Martens, K., Chui, C. O., Brammertz, G., Jaeger, B. De, Kuzum, D., Meuris, M., Heyns, M. M., Krishnamohan, T., Saraswat, K., Maes, H. E. and Groeseneken, G., IEEE Trans. Elect. Dev. 55 (2), 547 (2008).10.1109/TED.2007.912365Google Scholar
22 Shur, M., in Physics of Semiconductor Devices, Prentice-Hall Inc., Simon & Schuster Englewood Cliffs, N.J., 1990.Google Scholar
23 Dimoulas, A., Tsipas, P., and Sotiropulos, A., Appl. Phys. Lett. 89, 252110 (2006).10.1063/1.2410241Google Scholar