Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T18:16:23.947Z Has data issue: false hasContentIssue false

Carrier Tunneling, Current Instabilities, and Negative Differential Conductivity in Nanocrystalline Silicon – Silicon Dioxide Superlattices

Published online by Cambridge University Press:  11 February 2011

B. V. Kamenev
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102
G. F. Grom
Affiliation:
Agere Systems, Alhambra, CA 91030
D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada K1A0R6
J. P. McCaffrey
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada K1A0R6
B. Laikhtman
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem, Israel
L. Tsybeskov
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102
Get access

Abstract

Low temperature measurements of differential conductivity in nanocrystalline Si – amorphous SiO2 superlattices surprisingly reveal a clear double-peak structure associated with tunneling via levels of light and heavy holes. Numerical simulations show not only detailed agreement with the experiment but also predict that the studied system has no stable solutions for carrier concentration higher than 1017 cm−3. According to this prediction, partial screening of the external electric field generates current instabilities and oscillations, and that is experimentally observed. The developed model also suggests that a more uniform electric field and stabilization of carrier transport at a higher level of carrier density can be achieved under transient carrier injection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lauhon, L. J., Gudiksen, M. S., Wang, D., and Lieber, C. M., Nature 420, 57 (2002).Google Scholar
Korgel, B. A., Phys. Rev. Lett. 86, 127 (2001).Google Scholar
Wallis, T. M., Nilius, N., and Ho, W., Phys. Rev. Lett. 89, 236802 (2002).Google Scholar
Sun, S. and Murray, C. B., J. Appl. Phys. 85, 4325 (1999).Google Scholar
5. Williamson, A. J., Grossman, J. C., Hood, R. Q., Puzder, A., and Galli, G., Phys. Rev. Lett. 89, 196803 (2002).Google Scholar
6. Crooker, S. A., Hollingsworth, J. A., Tretiak, S., and Klimov, V. I., Phys. Rev. Lett. 89, 186802 (2002).Google Scholar
7. Tsybeskov, L., Hirschman, K. D., Duttagupta, S. P., Zacharias, M., Fauchet, P. M., McCaffrey, J. P., and Lockwood, D. J., Appl. Phys. Lett. 72, 43 (1998).Google Scholar
8. Grom, G. F., Lockwood, D. J., McCaffrey, J. P., Labbe, H. J., Tsybeskov, L., Fauchet, P. M., White, B., Diener, J., Heckler, H., Kovalev, D., and Koch, F., Nature 407, 358 (2000).Google Scholar
9. Tsybeskov, L., Grom, G. F., Krishnan, R., Montes, L., Fauchet, P. M., Kovalev, D., Diener, J., Timoshenko, V., Koch, F., McCaffrey, J. P., Labbe, H. J., Sproule, G. I., Lockwood, D. J., Niquet, Y. M., Delerue, C. and Allan, G., Europhysics Letters 55, 552 (2001).Google Scholar
10. Chaplik, A.V., Shvartsman, L. D., Physics, Chemistry and Mechanics of Surfaces 2, 73 (1982).Google Scholar
11. Laikhtman, B., Kiehl, R. A., and Frank, D. J., J. Appl. Phys. 70, 1531(1991).Google Scholar
12. Miller, D. L. and Laikhtman, B., Phys. Rev. B 54, 10669 (1996).Google Scholar
13. Delerue, C., Lannoo, M., and Allan, G., Phys. Rev. Lett. 84, 2457 (2000).Google Scholar
14. Ögüt, S., Chelikowsky, J. R., and Louie, S. G., Phys. Rev. Lett. 79, 1770 (1997).Google Scholar
15. Esaki, L. and Chang, L. L., Phys. Rev. Lett. 33, 495 (1974).Google Scholar
16. Tsu, R., Chang, L. L., Sai-Halasz, G. A., and Esaki, L., Phys. Rev. Lett. 34, 1509 (1975).Google Scholar
17. Tarucha, S., Ploog, K., and von Klitzing, K., Phys. Rev. B 36, 4558 (1987).Google Scholar
18. Muller, W., Bertran, D., Grahn, H. T., von Klitzing, K. and Ploog, K., Phys. Rev. B 50, 10998 (1994).Google Scholar