Skip to main content Accessibility help

Carrier drift-mobilities and solar cell models for amorphous and nanocrystalline silicon

  • Eric A Schiff (a1)


Hole drift mobilities in hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) are in the range of 10-3 to 1 cm2/Vs at room-temperature. These low drift mobilities establish corresponding hole mobility limits to the power generation and useful thicknesses of the solar cells. The properties of as-deposited a-Si:H nip solar cells are close to their hole mobility limit, but the corresponding limit has not been examined for nc-Si:H solar cells. We explore the predictions for nc-Si:H solar cells based on parameters and values estimated from hole drift-mobility and related measurements. The indicate that the hole mobility limit for nc-Si:H cells corresponds to an optimum intrinsic-layer thickness of 2-3 μm, whereas the best nc-Si:H solar cells (10% conversion efficiency) have thicknesses around 2 μm.



Hide All
1 Green, M. A. Silicon Solar Cells: Advanced Principles & Practice (University of New South Wales, Sydney, 1995).
2 Schiff, E. A. Solar Energy Materials and Solar Cells 78, 567(2003).
3 Zhu, K. Yang, J. Wang, W. Schiff, E. A. Liang, J. and Guha, S. in Amorphous and Nanocrystalline Silicon Based Films — 2003, edited by Abelson, J.R. Ganguly, G. Matsumura, H. Robertson, J. Schiff, E. A. (Materials Research Society Symposium Proceedings Vol. 762, Pittsburgh, 2003), pp. 297302.
4 Liang, Jianjun, Schiff, E. A. Guha, S. Yan, Baojie, and Yang, J. Appl. Phys. Lett. 88 063512063514 (2006).
5 Goodman, A. M. and Rose, A. J. Appl. Phys. 42, 2823(1971).
6 Crandall, R. S. J. Appl. Phys. 55, 4418(1984).
7 Mihailetchi, V. D. Wildeman, J. and Blom, P. W. M., Phys. Rev. Lett. 94, 126602(2005).
8 Schiff, E. A. J. Phys.: Condens. Matter 16, S52655275 (2004).
9 Wang, Qi, Antoniadis, Homer, Schiff, E. A. and Guha, S. Phys. Rev. B 47, 9435(1993).
10 Schiff, E. A. J. Non-Cryst. Solids 352, 1087(2006).
11 Deng, X. and Schiff, E. A. in Handbook of Photovoltaic Science and Engineering, Antonio Luque and Steven Hegedus, editors (John Wiley & Sons, Chichester, 2003), pp. 505565.
12 Mai, Y. Klein, S. Geng, X. Hulsbeck, M. Carius, R. and Finger, F. Thin Solid Films 501, 272(2006).
13 Mai, Y. Klein, S. Carius, R. Wolff, J. Lambertz, A. and Finger, F. J. Appl. Phys. 97, 114913(2005).
14 Bailat, J. Domine, D. Schluchter, R. Steinhauser, J. Fay, S. Freitas, F. Bucher, C. Feitknecht, L. Niquille, X. Tscharner, T. Shah, A. Ballif, C. in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol. 2 (IEEE, 2006), p. 1533.
15 Nath, M. Roci, P. Cabarrocas, I, Johnson, E. V. Abramov, A. Chatterjee, P. Thin Solid Films 516, 69746978 (2008).
16 Pieters, B. Stiebig, H. Zeman, M. and Swaaij, R. A. C. M. M. van, J. Appl. Phys. 105, 044502(2009).
17 Dylla, T. Finger, F. and Schiff, E. A. Appl. Phys. Lett. 87, 032103032105 (2005).
18 Dylla, T. Reynolds, S. Carius, R. Finger, F. J. Non-Cryst. Solids 352, 10931096 (2006). Note that these authors use the L = d definition of the drift-mobility (see [29]).
19 Schiff, E. A. Phil. Mag. B, in press.
20 Juŝka, G., Viliunas, M. Arlauskas, K. Stuchlik, J. and Koèka, J., Phys. Stat. Sol. (a) 171, 539(1999).
21 Juŝka, G., Arlauskas, K. Stuchlik, J. and Isterbacka, J. J. Non-Cryst. Solids 352, 1167(2006).
22 Droz, C. Goerlitzer, M. Wyrsch, N. and Shah, A. J. Non-Cryst. Solids 266–269, 319(2000).
23 Schwarz, R. Sanguino, P. Klynov, S. Fernandes, M. Macarico, F. Louro, P. and Vieira, M. Mat. Res. Soc. Symp. Proc. Vol. 609, A32.4.1 (2000).
24 Okur, S. Gunes, M. Finger, F. and Carius, R. Thin Solid Films 501, 137(2006).
25 Reynolds, S. Smimov, V. Main, C. Finger, F. and Carius, R. in Mat. Res. Soc. Symp. Proc. Vol. 808 (Materials Research Society, Pittsburgh, 2004), p. A.5.7.1.
26The temperature-dependence of the bandgap for a-Si:H is -0.47 meV/K [4]. For nc-Si:H we've used the value for c-Si, which is -0.27 meV/K near room-temperature; see Weber, J. in Properties of Crystalline Silicon, Hull, R. ed., Institution of Engineering and Technology, Stevenage, 1999, pp. 391393.
27 Saripalli, S. Sharma, P. Reusswig, P. Dalal, V. J. Non-Cryst. Solids 354, 2426(2008).
28 Yan, B. Yue, G. Yang, J. Guha, S. Williamson, D. L. Han, D. and Jiang, C.S. Appl. Phys. Lett. 85, 1955(2004).
29Most experimental papers cited here calculate the drift-mobility assuming that the mean displacement L at the transit-time is half the sample thickness d (L = d/2) [9]. Some experimenters use the older expression L = d (cf. [18]), which yields mobilities that are twice as large.
30This expression in square brackets differs slightly from eq. (4) of ref. [8] because that reference implicitly assumed that the product NVbT is temperature-independent. This assumption requires that the temperature-dependence of bT compensates that of NV, which seems arbitrary. The fittings to drift-mobilities are not substantially affected; this can be seen in Fig. 6, where the fitting Zhu03 seems satisfactory with the original parameters.
31 Dinca, S. Ganguly, G. Lu, Z. Schiff, E. A. Vlahos, V. Wronski, C. R. Yuan, Q. in Amorphous and Nanocrystalline Silicon Based Films-2003, edited by Abelson, J.R. Ganguly, G. Matsumura, H. Robertson, J. Schiff, E. A. (Materials Research Society Symposium Proceedings Vol. 762, Pittsburgh, 2003), pp. 345350.
32 Schiff, E. A. Phys. Rev. B 24, pp. 6189 (1981).
33 Gu, Q. Schiff, E. A. Grebner, S. Wang, F. and Schwarz, R. Phys. Rev. Lett. 76, 3196(1996).


Related content

Powered by UNSILO

Carrier drift-mobilities and solar cell models for amorphous and nanocrystalline silicon

  • Eric A Schiff (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.