Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T16:51:49.841Z Has data issue: false hasContentIssue false

Carrier and Atomic Distributions in Si Implanted and Rapid Thermally Annealed InP ; Influence of Dual Implants of As or P

Published online by Cambridge University Press:  28 February 2011

Nicole DUIIAMEL
Affiliation:
Centre National d'Etudes des Télécommunications 196, avenue Henri Ravera92220 BAGNEUX - FRANCE
Brigitte DESCOUTS
Affiliation:
Centre National d'Etudes des Télécommunications 196, avenue Henri Ravera92220 BAGNEUX - FRANCE
Philippe KRAUZ
Affiliation:
Centre National d'Etudes des Télécommunications 196, avenue Henri Ravera92220 BAGNEUX - FRANCE
Krishna RAO
Affiliation:
Centre National d'Etudes des Télécommunications 196, avenue Henri Ravera92220 BAGNEUX - FRANCE
Jean DANGLA
Affiliation:
Centre National d'Etudes des Télécommunications 196, avenue Henri Ravera92220 BAGNEUX - FRANCE
Pierre HENOC
Affiliation:
Centre National d'Etudes des Télécommunications 196, avenue Henri Ravera92220 BAGNEUX - FRANCE
Get access

Abstract

Rapid thermal anneal (R.T.A.) by halogen lamps has been carried out to activate Si29 implants in semi-insulating InP substrates with the aim of realizing good contact areas at low depth (0.1 μm). To better understand the electrical behaviour of Si observed in these conditions, and to try to increase the electrical activity we performed dual implantations (As + Si or P + Si). The crystallographic disorder remaining after anneal and its influence on the electrical properties are discussed. The uniformity of activation has been evaluated by Hall effect and specific contact resistivity cartographies both for mono-implantations and for dual implantations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Eisen, F.H., Welch, B.M., Muller, H., Gamo, K., Inada, T. and Mayer, J.W., sol. Stat. Electron. 20, 219 (1977).Google Scholar
[2] Woodhouse, J.D., Donnelly, J.P., Nitishin, P.M., Owens, E.B. and Ryan, J.L., Sol. Stat. Election. 27, 677 (1984).Google Scholar
[3] Davies, D.E., J. Cryst. Growth 54, 150 (1981).Google Scholar
[4] Susuki, T., Sakurai, H. and Aral, M., Appl. Phys. Lett. 43, 951 (1983).Google Scholar
[5] Cowern, N.E.B., Godfrey, D.J. and Sykes, D.E., Appl. Phys Lett. 49, 1711 (1986).Google Scholar
[6] Van Neida, A.R., Pearton, S.J., Stavola, M. and Caruso, R., Appl. Phys. Lett. 49 1708 (1986).Google Scholar
[7] Lorenzo, J.P., Davies, D.E., Soda, K.J., Ryan, T.G. and Nc Nally, P.J. M.R.S. Boston Nov 1982Google Scholar
[8] Descouts, B., Duhamel, N. Daoud-Ketata, K., Krauz, P. and Godefroy, S., Appl. Phys. Lett. 60, 450 (1986).Google Scholar
[9] from Sulzer electrotechnique, BP 24. 74490 Saint-Jeoire FRANCE.Google Scholar
[10] Cummings, K.D., Pearton, S.J. and Vella Coleiro, G.P., J. Appl. Phys. 60, 163 (1986).Google Scholar
[11] Tiku, S.K. and Duncan, W.M., J. Electrochem. Soc. 132 2237 (1985).Google Scholar
[12] Kasahara, J., Gibbons, J.F., Magee, T.J. and Peng, J., J. Appl. Phys. 51, 4119 (1980).Google Scholar
[13] Sadana, D.K., Nucl. Instrum. Methods B 7, 375 (1985).Google Scholar
[14] Auvray, P., Guivarc'h, A., L'Haridon, H., Pelous, G., Salvi, M. and Henoc, P., J. Appl. Phys. 53, 6202 (1982).Google Scholar
[15] Christel, L.A., Gibbons, J. F., J. Appl. Phys. 52, 5050 (1981).Google Scholar
[16] Patel, K.K. and Sealy, B.J., Appl. Phys. Lett. 48, 1467 (1986).Google Scholar
[17] Masum Choudhury, A.M.M. and Armiento, C. A., Appl. Phys. Lett. 50, 448 (1987).Google Scholar