Skip to main content Accessibility help

Carbon Nitride Thin Films Grown by Pulsed Laser Deposition

  • Randolph E. Treece (a1), James S. Horwitz (a2) and Douglas B. Chrisey (a2)


Thin films of diamond and diamond-like carbon (DLC) are technologically important materials that serve as hard, scratch resistant and chemically inert coatings for tools and optics. Recent calculations suggest that β-C3N4 should be harder than diamond. We have deposited carbon nitride (CNx) thin films by pulsed laser deposition. The films were grown from a graphite target in a nitrogen background. The nitrogen source was either (a) a N2 gas atmosphere, or (b) a N2 +/N+ ion beam generated by a Kaufman ion gun. A wide range of deposition parameters were investigated, such as deposition pressure (0.3-900 mTorr N2), substrate temperature (50 and 600°C), and laser fluence (1-4 J/cm2) and laser repetition rate (1-10 Hz). The films have been characterized by Rutherford Backscattering Spectroscopy, thin-film X-ray diffraction, scanning electron microscopy, and micro-Raman spectroscopy. In general, the films were nitrogen deficient with a maximum nitrogen to carbon ratio (N/C) of 0.45 and a shift in the G band Raman peak consistent with amorphous CNx (a-CNx).



Hide All
1. Liu, A.Y. and Cohen, M. L., Science 245, 841 (1989)
2. Liu, A.Y. and Cohen, M. L., Phys. Rev. B 41, 10727 (1990).
3. Han, H. and Feldman, B.J., Sol. State Comm. 65, 921 (1988).
4. Chen, M.Y., Lin, X., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., Surf. Coatings Technol. 54/55, 360 (1992).
5. Chen, M.Y., Li, D., Lin, X., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., J. Vac. Sci. Technol. A 11, 521 (1993).
6. Li, D., Chung, Y.W., Wong, M.S., and Sproul, W.D., J. Appl. Phys. 74, 219 (1993).
7. Ricci, M., Trinquecoste, M., and Delhaes, P., Surf. Coatings Technol. 47, 299 (1991).
8. Ricci, M., Trinquecoste, M., Auguste, F., Canet, R., Delhaes, P., Guimon, C, Pfister-Guillouzo, G., Nysten, B., and Issi, J.P., J. Mater. Res. 8, 480 (1993).
9. Kaufan, J.H., Metin, S., and Saperstein, D.D., Phys. Rev. B 39, 13053 (1989).
10. Xiong, F. and Chang, R.P.H., Mater. Res. Soc. Proc. 285, 587 (1993).
11. Niu, C., Lu, Y.Z., and Lieber, C.M., Science 261, 334 (1993).
12. Grabowski, K.S., Horwitz, J.S., and Chrisey, D.B., Ferroelectrics 116, 19 (1991); and, J.S. Horwitz, K.S. Grabowski, D.B. Chrisey, and R.E. Leuchtner, Appl. Phys. Lett. 59, 1565 (1991).
13. Oaks, D.B., Butler, J.E., Snail, K.A., Carrington, W.A., Hanssen, L.M., J. Appl. Phys. 69, 2602 (1991).
14. Smidt, F.A., Int. Mater. Rev. 35, 61 (1990); and E.P. Donovan, D. VanVechten, A.D.F. Kahn, C.A. Carosella, and G.K. Hubler, Appl. Opt. 55, 2940 (1989).
15. Huong, P.V., Mater. Sci. Eng. B 11, 235 (1992).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed