Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T03:57:46.353Z Has data issue: false hasContentIssue false

Carbon Nanotubes' and Silicon Carbide Whiskers' Growth on Metal Catalysts: Common Features of Formation Mechanisms

Published online by Cambridge University Press:  01 February 2011

Vladimir Kuznetsov
Affiliation:
Boreskov Institute of Catalysis, Lavrentieva 5, 630090, Novosibirsk, Russia.
Anna Usoltseva
Affiliation:
Boreskov Institute of Catalysis, Lavrentieva 5, 630090, Novosibirsk, Russia.
Ilya Mazov
Affiliation:
Boreskov Institute of Catalysis, Lavrentieva 5, 630090, Novosibirsk, Russia.
Get access

Abstract

The formation mechanisms of carbon deposits and silicon carbide whiskers on metal surface catalysts have some common steps. The most important are: (1) the formation of metal particle alloys oversaturated with carbon or silicon and carbon atoms and (2) the nucleation of corresponding deposits on the metal catalyst surface. A thermodynamic analysis of the carbon and/or silicon carbide nucleation on the metal surface was performed. The master equations for the dependence of critical radius of carbon or SiC nucleus on reaction parameters, such as reaction temperature, supersaturation degree of catalyst particles with C (or Si and C), work of adhesion of metal to carbon (or metal to SiC), were obtained. These equations combined with the phase diagram approach can be used for the description of different scenarios of carbon and/or SiC deposits formation and for the development of the main principles of catalyst and promoters design.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuznetsov, V.L., Usoltseva, A.N., Chuvilin, A.L., Obraztsova, E.D., Bonard, J.-M., Phys. Rev.B, 64, 54015408 (2001).Google Scholar
2. Special issue on Advances in Nanotubes in MRS Bulletin, 4, 237285 (2004).Google Scholar
3. Chrysanthou, A., Grieveson, P., J. Mater. Sci., 26, 34633476 (1991).Google Scholar
4. Rado, C., Kalogeropoulou, S., Eustathopoulos, N., Acta mater., 47, 461473 (1999).Google Scholar
5. Kuznetsov, V.L., Usoltseva, A.N., Butenko, Yu.V., Kinetics and Catalysis (Egl.) 44, 726734 (2003).Google Scholar
6. Kuznetsov, V.L., Mazov, I. N., Comput. Res. Mater., in press (2004).Google Scholar
7. Satishkumar, B. C., Govindaraj, A., Sen, , Rahul, , Rao, C. N. R., Chem. Phys. Lett., 293, 4752 (1998).Google Scholar
8. Cheng, H. M., Li, F., Su, G., Pan, H. Y., He, L., Sun, X., Dresselhaus, M. S., Appl. Phys. Lett., 72, 32823284 (1998).Google Scholar
9. Nikolaev, P., Bronikowski, M., Smalley, R. E. et al., Chem. Phys. Lett., 313, 9197 (1999).Google Scholar
10. Zhou, W., Ooi, Y., Russo, R., Smalley, R. E. et al, Chem. Phys. Lett., 350, 614 (2001).Google Scholar
11. Bacsa, R. R., Laurent, Ch., Peigney, A., Vaugien, T., Flahaut, E., Bacsa, W. S., Rousset, A., J. Am. Ceram. Soc., 85, 26662669 (2002).Google Scholar
12. Govindaraj, A., Flahaut, E., Laurent, Ch., Peigney, A., Rousset, A., Rao, C. N. R., J. Mater. Res., 14, 25672576 (1999).Google Scholar
13. Gomez-Acebo, T., Sarasola, M., Castro, F., Computer Coupling of Phase Diagrams and Thermochemistry, 27, 325334 (2003).Google Scholar
14. Huang, W., Metall. Trans., 21, 21152126 (1990).Google Scholar
15. Kuznetsov, V.L. in “Nanoengineered Nanofibrous Materials” (Eds: Guceri, S.I; Gogotsi, Y., and Kuznetsov, V.), NATO Science Series Volume 169 NATO-ASI (PST 979397), Netherlands (2004) p. 1934.Google Scholar
16. Molecular constants of inorganic compounds, ed. Krasnov, K.S., “Chemistry”, 1968 (in Russian).Google Scholar
17. Rado, C., Kalogeropoulous, S., Eustathopoulos, N., Acta mater., 47, N 2, 461473 (1999).Google Scholar
18. Syvajarvi, M., Yakimova, R., Jansen, E., Diamond and Related Materials, 6, 12661268 (1997).Google Scholar