Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T14:51:20.252Z Has data issue: false hasContentIssue false

Capacitance-Voltage Measurement of an Ambipolar Pentacene Field Effect Transistor in Operation by Using Displacement Current Measurement

Published online by Cambridge University Press:  22 September 2011

Yuya Tanaka
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Yutaka Noguchi
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Hisao Ishii
Affiliation:
Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Get access

Abstract

The channel formation process of a pentacene ambipolar field-effect transistor was studied by displacement current measurement (DCM). We proposed a modified measurement circuit of DCM in order to investigate the channel formation at the organic/insulator interface under transistor operation. We observed an additional terrace structure between the depletion and accumulation states when the drain voltage is applied. The capacitance at the terrace structure corresponds well with that in pinch-off condition. DCM enables us to understand the operation mechanism of the organic FET in more detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Horowitz, G., Adv. Mater. 10 365 (1998).Google Scholar
2. DiBenedetto, S.A., Facchetti, A., Ratner, M.A., Marks, T.J., Adv. Mater. 21 1407 (2009).Google Scholar
3. Sze, S.M., Physics of Semiconductor Devices, second ed., John Wiley & Sons, New York, 1981.Google Scholar
4. Ogawa, S., Kimura, Y., Ishii, H., Niwano, M., Jpn. J. Appl. Phys. 42 L1275 (2003).Google Scholar
5. Ogawa, S., Naijo, T., Kimura, Y., Ishii, H., Niwano, M., Synth. Met. 153 253 (2005).Google Scholar
6. Suzue, Y., Manaka, T., Iwamoto, M., Jpn. J. Appl. Phys. 44 561 (2005).Google Scholar
7. Manaka, T., Lim, E., Tamura, R., Iwamoto, M., Thin Solid Films 499 386 (2006).Google Scholar
8. Scheinert, S., Schliefke, W., Synth. Met. 139 501 (2003).Google Scholar
9. Chen, Y.-M., Lin, C.-F., Lee, J.-H., Huang, J., Solid-State Electron. 52 269 (2008).Google Scholar
10. Twarowski, A.J., Albrecht, A.C., J. Chem. Phys. 70 2255 (1979).Google Scholar
11. Iriyama, K., Shiraki, M., Thuda, K., Okada, A., Sugi, M., Iizima, S., Kudo, K., Shiokawa, S., Moriizumi, T., Yasuda, T., Proc. 1st Photovoltaic Science and Engineering Conf. Japan, Tokyo, 1979, Jpn. J. Appl. Phys. 19 Suppl. 19-2, p. 173 (1980).Google Scholar
12. Egusa, S., Gemma, N., Azuma, M., J. Appl. Phys. 71 2042 (1992).Google Scholar
13. Egusa, S., Miura, A., Gemma, N., Azuma, M., Jpn. J. Appl. Phys. 33 2741 (1994).Google Scholar
14. Noguchi, Y., Sato, N., Tanaka, Y., Nakayama, Y., Ishii, H., Appl. Phys. Lett. 92 203306 (2008).Google Scholar
15. Noguchi, Y., Sato, N., Miyazaki, Y., Ishii, H., Appl. Phys. Lett. 96 143305 (2010).Google Scholar
16. Majima, Y., Kawakami, D., Suzuki, S., Yasutake, Y., Jpn. J. Appl. Phys. 46 393 (2007).Google Scholar
17. Suzuki, S., Yasutake, Y., Majima, Y., 47 3167 (2008).Google Scholar
18. Suzuki, S., Yasutake, Y., Majima, Y., 11 594 (2010).Google Scholar
19. Bolognesi, A., Berliocchi, M., Manenti, M., Carlo, A. D., Lugli, P., Lmimouni, K., Dufour, C., IEEE T. Electron Dev. 51 1997 (2004).Google Scholar
20. Anderson, B., Anderson, R., Fundamentals of Semiconductor Devices, McGraw-Hill, 2004.Google Scholar
21. Ogawa, S., Kimura, Y., Niwano, M., Ishii, H., Appl. Phys. Lett. 90 3 (2007).Google Scholar