Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T17:58:19.596Z Has data issue: false hasContentIssue false

Capacitance Transient Analysis of Mbe Grown Gaas on Silicon Substrates

Published online by Cambridge University Press:  28 February 2011

G. F. Burns
Affiliation:
Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge, Massachusetts 02139
T. C. Chong
Affiliation:
Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge, Massachusetts 02139
C. G. Fonstad
Affiliation:
Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Get access

Abstract

Capacitance transient spectroscopy has been applied to identify deep levels associated with heteroepitaxial GaAs grown on silicon. Results from p+n diode test structures reveal creation of the electron trap EL2 and a high density of hole states in the bandgap. This is the first reported observation of hole traps in MBE GaAs on Si. The activation behavior of the electron and hole signal peaks fits the signature of two different charge states associated with EL2, a native point defect complex seen in MOCVD, VPE, and bulk-grown GaAs, but not usually observed in MBE grown GaAs. Interstingly, the spectra seen show many similarities with earlier deep level transient spectroscopy (DLTS) observations on plastically deformed GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nauka, K., Reid, G. A., Rosner, S. J., Koch, S. M., and Harris, J. S., MRS Sym. Proc. 91, 225 (1987).CrossRefGoogle Scholar
[2] Chand, N., Fischer, R., Sergent, A. M., Lang, D.V., and Cho, A. Y., MRS Sym. Proc. 91, 233 (1987).Google Scholar
[3] Blood, P. and Harris, J. J., J. Appl. Phys. 56, 993 (1984).CrossRefGoogle Scholar
[41 Lang, D. V., Cho, A. Y., Gossard, A. C., Ilegems, M., and Wiegman, W., J. Appl. Phys. 47, 2558 (1976).CrossRefGoogle Scholar
[5] DeJule, R. Y., Haase, M. A., and Stillman, G.E., J. Appl. Phys. 57, 5287 (1985).Google Scholar
[6] Chong, T. C. and Fonstad, C. G., J. Vac. Sci. Technol. B5, 815 (1987).CrossRefGoogle Scholar
17 ] Ishizaka, A., Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
[8] Whitney, P. S., Lee, W., and Fonstad, C. G., J. Vac. Sci. Technol. B5 796 (1987).CrossRefGoogle Scholar
[9] Martin, G. M. and Makram-Ebeid, S., Deep Centers in Semiconductors, (Gordon and Breach Science Publishers, New York, 1986) pp 399487.Google Scholar
[10] Lagowski, J., Lin, D. G., Chen, T.-P., Skdowronski, M., and Gatos, H. C., Appl. Phys. Lett. 47, 929 (1985).CrossRefGoogle Scholar
[111 Mittonneau, A., Martin, G. M., and Mirceau, A., Elec. Lett. 13, 666 (1977).Google Scholar
[12] Ishida, T., Maeda, K., and Takeuchi, S., Appl. Phys. 21, 257 (1980).CrossRefGoogle Scholar
[13] Kadota, Y. and Chino, K., Jpn. J. Appl. Phys. 22, 1563 (1983).CrossRefGoogle Scholar
[14] Weber, E. R., Ennen, H., Kaufmann, U., Windscheif, J., Schneider, J., and Wosinski, T., J. Appl. Phys. 53, 6140 (1982).CrossRefGoogle Scholar
[15] Wosinski, T. and Figielski, T., Sol. St. Comm. 63, 885 (1987).Google Scholar
[16] Mittonneau, A., Martin, G. M., and Mirceau, A., Elec. Lett. 13, 191 (1977).CrossRefGoogle Scholar