Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T10:37:59.710Z Has data issue: false hasContentIssue false

Calculations of Surface Structure for SrTiO3 Perovskite

Published online by Cambridge University Press:  21 March 2011

E. Heifetsa
Affiliation:
Carnegie Institution of Washington, 5251 Broad Branch Rd., N.W. Washington D.C. 20015 and California Institute of Technology, MS 252-21, Pasadena CA 91125
R.I. Eglitisb
Affiliation:
Department of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany
E.A. Kotomin
Affiliation:
Department of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany Institute for Solid State Physics, University of Latvia, 8 Kengaraga str.,Riga LV-1063, Latvia
G. Borstelb
Affiliation:
Department of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany
Get access

Abstract

We present and discuss results of the calculations for SrTiO3 (100) surface relaxation with different terminations (SrO and TiO2) using a semi-empirical shell model (SM) as well as abinitio methods based on Hartree-Fock (HF) and Density Functional Theory (DFT) formalisms. Using the SM, the positions of atoms in 16 near-surface layers placed atop a slab of rigid ions are optimized. This permits us determination of surface rumpling and surfaceinduced dipole moments (polarization) for different terminations. We also compare results of the ab initio calculations based on both HF with the DFT-type electroncorrelation corrections, several DFT with different exchange-correlation functionals, and hybrid exchange techniques. OurSM results for the (100) surfaces are in a good agreement with both our ab initio calculations and LEED experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Noguera, C., Physics and Chemistry at Oxide Surfaces, Cambridge Univ. Press, N.Y., 1996. Google Scholar
2. Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics andRelated Materials, Clarendon,Oxford, 1977. Google Scholar
3. Auciello, O., Scott, J.F., and Ramesh, R., Physics Today, July 1998, pp. 2230.Google Scholar
4. Proceedings of the Williamsburg workshop on Fundamental Physics of Ferroelectrics-99, J. Phys. Chem. Sol. 61, No 2 (2000).Google Scholar
5. Zhong, W., and Vanderbilt, D., Phys. Rev. B53, 50475055 (1996).Google Scholar
6. Bickel, N., Schmidt, G., Heinz, K., and Müller, K., Phys. Rev. Lett. 62, 20092013 (1989).Google Scholar
7. Hikita, T., Hanada, T., Kudo, M., and Kawai, M., Surf. Sci. 287/288, 377380 (1993).Google Scholar
8. Kudo, M., Hikita, T., Hanada, T., Sekine, R., and Kawai, M., Surf. and Interf. Analysis 22, 412416 (1994).Google Scholar
9. Ikeda, A., Nishimura, T., Morishita, T., and Kido, Y., Surf. Sci. 433–435, 520525 (1999).Google Scholar
10.T. Nishimura, Ikeda, A., Namba, H., Morishita, T., Kido, Y., Surf. Sci. 421, 273278 (1999).Google Scholar
11. Padilla, J., and Vanderbilt, D., Surf. Sci. 418, 6470 (1998).Google Scholar
12. Padilla, J., and Vanderbilt, D., Phys. Rev. B56, 16251630 (1997).Google Scholar
13. Meyer, B., Padilla, J., and Vanderbilt, D., Faraday Discussions 114, 395405 (1999).Google Scholar
14. Cora, F., and Catlow, C.R.A., Faraday Discussions 114, 421430 (1999).Google Scholar
15. Cohen, R.E., Ferroelectrics 194, 323342 (1997).Google Scholar
16. Fu, L., Yashenko, E., Resca, L., and Resta, R., Phys. Rev. B60, 26972703 (1999).Google Scholar
17. Cheng, C., Kunc, K., and Lee, M.H., Phys. Rev. B62, 1040910417 (2000).Google Scholar
18. Ravikumar, V., Wolf, D., and Dravid, V.P., Phys. Rev. Lett. 74, 960964 (1995).Google Scholar
19. Prade, J., Schriöder, U., Kress, W., and Kulkarni, de F.W., J. Phys: Condens. Matter 5, 115 (1993).Google Scholar
20. Tinte, S., and Stachiotti, M.G., AIP Conf. Proc 535 (ed. Cohen, R), 273282 (2000).Google Scholar
21. Heifets, E., Kotomin, E.A., and Maier, J., Surf. Sci. 462, 1935 (2000).Google Scholar
22. Gay, D.H., and Rohl, A.L., J. Chem. Soc. Faraday Trans. 91, 925935 (1995).Google Scholar
23. Saunders, V.R., Dovesi, R., Roetti, C., Causa, M., Harrison, N.M., Orlando, R. and Zicovich-Wilson, C.M., Crystal-98 User Manual (University of Turin, 1999).Google Scholar