Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-04T21:20:01.998Z Has data issue: false hasContentIssue false

C49-TiSi2 Epitaxial Orientation Dependence of the C49-to-C54 Phase Transformation Rate

Published online by Cambridge University Press:  10 February 2011

T. Nakamura
Affiliation:
Fujitsu Laboratories Ltd., Atsugi, 243-01 Japan, tnakamu@ccg. flab. fujitsu.co.jp
K. Ikeda
Affiliation:
Fujitsu Laboratories Ltd., Atsugi, 243-01 Japan, tnakamu@ccg. flab. fujitsu.co.jp
H. Tomita
Affiliation:
Fujitsu Laboratories Ltd., Atsugi, 243-01 Japan, tnakamu@ccg. flab. fujitsu.co.jp
S. Komiya
Affiliation:
Fujitsu Laboratories Ltd., Atsugi, 243-01 Japan, tnakamu@ccg. flab. fujitsu.co.jp
K. Nakajima
Affiliation:
Fujitsu Laboratories Ltd., Atsugi, 243-01 Japan, tnakamu@ccg. flab. fujitsu.co.jp
Get access

Abstract

Effects of the C49-TiSi2 epitaxial orientation on the C49-to-C54 phase transformation rate have been studied for samples with different pre-amorphization implantation (PAI) conditions. The C49 epitaxial orientation to the Si(001) substrate is characterized by use of grazing-incidence X-ray diffraction (GIXD) measurements. We found that the PAl treatment suppresses the epitaxial growth of C49-TiSi2 on Si(001) substrates and the poorer orientational alignment of C49-TiSi2 causes a more rapid transformation to C54-TiSi2. We believe this suppression of epitaxial alignment is a possible mechanism to understand the effect of the PAl treatment on the C49-C54 transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Mann, R.W., Clevenger, L.A., Agnello, P.D., and White, F.R., IBM J.Res. Develop., 39, 403(1995).Google Scholar
2) Lau, Chi K., “Method of forming a Titanium Disilicide”, U.S.Patent 4545116, 1985.10.08.Google Scholar
3) Beyers, Robert and Sinclair, Robert, J. Appl. Phys. 57, 5240(1985).Google Scholar
4) Clevenger, L.A., Harper, J.M.E., and Cabral.Jr., C., Nobili, C., Ottaviani, G., and Mann, R., J. Appl. Phys., 72, 4978(1992).10.1063/1.352018Google Scholar
5) Lasky, J. B., Nakos, J.S., Cain, O.J., and Geiss, P.J., IEEE Trans. Elec. Dev. 38, 262(1991).10.1109/16.69904Google Scholar
6) Ma, Z., and Allen, L.H., Phys. Rev. B 49, 13501 (1994).10.1103/PhysRevB.49.13501Google Scholar
7) Ma, Z., Ramanath, G., and Allen, L.H., Mat. Res. Soc. Symp. Proc. Vol.320, p. 361(1994).10.1557/PROC-320-361Google Scholar
8) Sakai, I., Abiko, H., Kawaguchi, H., Hirayama, T., Johansson, L.E.G., and Okabe, K., VLSI Symp. Dig.66(1992).Google Scholar
9) Chen, C.C., Wang, Q.F., Jonckx, F., Jenq, Jyh-Shyang and Maex, K., Mat. Res. Soc. Symp. Proc. Vol.402, 89(1996).10.1557/PROC-402-89Google Scholar
10) Kittl, J.A., Hong, Q.A., Rodder, M., Prinslow, D.A., and Misium, G.R., VLSI Symp. Dig. 14 (1996).Google Scholar
11) Komiya, S., Tomita, H., Ikeda, K., Horii, Y., and Nakamura, T., Jpn. J. Appl. Phys, 35, 242(1996).10.1143/JJAP.35.242Google Scholar
12) Byun, J.S., J. Electrochem. Soc. 143, 1984 (1996).Google Scholar
13) Horii, Y, Tomita, H. and Komiya, S.: Rev. Sci. Instrum. 66 (1995) 137.Google Scholar
14) Tai, K., Kageyama, M., Okihara, M., Harada, Y, and Onoda, H. in Advanced Metallization and Interconnect Systems for ULSI Applications in 1997, edited by Cheung, R., Klein, J., Tsubouchi, K., Murakami, M., and Kobayashi, N. (Materials Research Society, Pittsburgh, PA, 1997)pp. 649654 Google Scholar