Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-28T11:38:38.335Z Has data issue: false hasContentIssue false

Bulk Materials Research for Thermoelectric Power Generation Applications

Published online by Cambridge University Press:  01 February 2011

George Nolas
Affiliation:
gnolas@cas.usf.edu, University of South Florida, Department of Physics, 4202 East Fowler Ave, Tampa, FL, 33620, United States
Matthew Beekman
Affiliation:
mbeekman@mail.usf.edu, University of South Florida, Tampa, FL, 33620, United States
Joshua Martin
Affiliation:
jmartin@cas.usf.edu, University of South Florida, Tampa, FL, 33620, United States
Dongli Wang
Affiliation:
gnolas@cas.usf.edu, University of South Florida, Tampa, FL, 33620, United States
Xiunu sophie Lin
Affiliation:
xlin@cas.usf.edu, University of South Florida, Tampa, FL, 33620, United States
Get access

Abstract

There are a variety of material systems employing different strategies in an effort to establish a new paradigm for thermoelectric materials performance. One approach is the PGEC, or “phonon-glass electron crystal”, approach were research towards optimization of the electrical properties of very low thermal conductivity materials is key. Other efforts focus on materials that exhibit high power factors via quantum-confinement or nano-scale affects. Still others focus on “engineering” metastable phases that possess properties that are distinct, if not unique, to solid state chemistry. All these approaches are valid and provide a fundamental knowledge base whereby present and future scientific materials discoveries will lead to new technological improvements. This paper focuses on bulk materials, in particular those material systems currently under investigation in the novel materials laboratory at the University of South Florida and the requirements and strategies for their optimization towards improved thermoelectric properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nolas, G. S., Morelli, D. T., and Tritt, T. M., Annu. Rev. Mat. Res. 29, 89 (1999).Google Scholar
2. Uher, C., Semiconductors and Semimetals 69, 139 (2000).Google Scholar
3. Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1325 (1996).Google Scholar
4. Nolas, G. S., Slack, G. A., and Schujman, S. B., in: Semiconductors and Semimetals, edited by Tritt, T. M.. 69 (Academic Press, 2000), p. 255.Google Scholar
5. Nolas, G. S. in Thermoelectrics Handbook: Macro to Nano-Structured Materials, edited by. Rowe, D. M., (CRC Press, Boca Raton, FL, 2005), p.33–1.Google Scholar
6. Saramat, A., Svensson, G., Palmqvist, A. E. C., Stiewe, E. M. C., Platzek, D., Williams, S. G. K., Rowe, D. M., Bryan, J. D., and Stucky, G. D., J. Appl. Phys. 99, 023708 (2006).Google Scholar
7. Kanatzidis, M. G., Semiconductors and Semimetals 69, 51 (2000).Google Scholar
8. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'quinn, B., Nature 413, 597 (2001).Google Scholar
9. Harman, T. C., Taylor, P. J., Walsh, M. P., and Laforge, B. E., Science 297, 2229 (2002).Google Scholar
10. Hsu, K. F., Loo, F. G. S., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
11. Wang, H., Li, J., Nan, C., Zhou, M., Liu, W., Zhang, B., and Kita, T., Appl. Phys. Lett. 88, 092104 (2006).Google Scholar
12. Kosuga, A., Uno, M., Kurosaki, K., and Yamanaka, S., J. Alloys & Comp 391, 288 (2005).Google Scholar
13. Kuznetsov, V. L., Kuznetsova, L. A., Kaliazin, A. E., and Rowe, D. M., J. Appl. Phys. 87, 7871 (2000).Google Scholar
14. Nolas, G. S., Cohn, J. L., Slack, G. A, and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).Google Scholar
15. Dong, J. and Sankey, O. F., J. Phys. Condens. Matter 11, 6129 (1999).Google Scholar
16. Dong, J., Sankey, O. F., and Myles, C. W., Phys. Rev. Lett. 86, 2361 (2001).Google Scholar
17. Nolas, G. S. and Kendziora, C. A., Phys. Rev. B 62, 7157 (2000).Google Scholar
18. Keppens, V., Sales, B. C., Mandrus, D., Chakoumakos, B. C., and Laermans, C., Phil. Mag. Lett. 80, 807 (2000).Google Scholar
19. Nolas, G. S., Chakoumakos, B. C., Mahieu, B., Long, G. J., and Weakley, T. J. R., Chem. Mater. 12, 1947 (2000).Google Scholar
20. Nolas, G. S., Slack, G. A., Cohn, J. L., and Schujman, S. B., in Proceedings of the 18th ICT (IEEE catalog #98TH8365, Piscataway, NJ, 1999) p. 294.Google Scholar
21. Meng, J. F., Shekar, N. V. C., Badding, J. V., and Nolas, G. S., J. Appl. Phys. 89, 1730 (2001).Google Scholar
22. Badding, J. V., Meng, J. F., and Polvani, D. A., Chem. Mater. 10, 2889 (1998).Google Scholar
23. Martin, J., Erickson, S., Nolas, G. S., Alboni, P., Tritt, T. M., and Yang, J., J. Appl. Phys. 99, 044903 (2006).Google Scholar
24. Dismukes, J. P., Ekstrom, L., and Paff, R. J., J. Phys. Chem. 68, 3021 (1964).Google Scholar
25. Nolas, G. S., Sharp, J., and Goldsmid, H. J. in Thermoelectrics: Basic Principles and New Materials Developments, (Springer, New York, NY, 2001),Google Scholar
26. Schaffler, F., in: Properties of Advanced Semiconductor Materials, edited by Levinshtein, M. E., Rumyantsev, S. L., and Shur, M. S.. (John Wiley & Sons, Inc., New York, NY, 2001), p. 149.Google Scholar
27. Moriguchi, K., Munetoh, S., and Shintani, A., Phys. Rev. B 62, 7138 (2000).Google Scholar
28. Nolas, G. S., Poon, J., and Kanatzidis, M., Mater. Res. Soc. Bull. 31, 199 (2006).Google Scholar
29. Beekman, M. and Nolas, G. S., J. Mater. Chem. DOI: 10.1039/b706808e, (2008).Google Scholar
30. Nolas, G. S., Beekman, M., Gryko, J., Lamberton, J. G.A., Tritt, T. M., and Mcmillan, P. F., Appl. Phys. Lett. 82, 910 (2003).Google Scholar
31. Beekman, M. and Nolas, G. S., Physica B 383, 111 (2006).Google Scholar
32. Ramachandran, G. K., Dong, J. J., Diefenbacher, J., Gryko, J., Marzke, R. F., Sankey, O. F., and Mcmillan, P. F., J. Solid State Chem. 145, 716 (1999).Google Scholar
33. Reny, E., Gravereau, P., Cros, C., and Pouchard, M., J. Mater. Chem. 8, 2839 (1998).Google Scholar
34. Bobev, S., Meyers, J., , V. F. Jr., and Yamasaki, Y., Proc. Int. Conf. Thermoelectrics 24, 48 (2006).Google Scholar
35. Beekman, M., W. Wong-Ng, Kaduk, J. A., Shapiro, A., and Nolas, G. S., J. Solid State Chem. 180, 1086 (2007).Google Scholar
36. Beekman, M., Kaduk, J. A., Gryko, J., Wong-Ng, W., Shapiro, A., and Nolas, G. S., (submitted).Google Scholar
37. Beekman, M. and Nolas, G. S., (unpublished).Google Scholar
38. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 16631 (1993).Google Scholar
39. Heremans, J. P., Thrush, C. M., and Morelli, D. T., J. Appl. Phys. 98, 063703 (2005).Google Scholar
40. Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P., Proc. Mater. Res. Soc. 886, 3 (2006).Google Scholar
41. Martin, J., Nolas, G. S., Zhang, W., and Chen, L., Appl. Phys. Lett. 90, 222112 (2007).Google Scholar
42. Zhang, W., Zhang, L., Cheng, Y., Hui, Z., Zhang, X., Xie, Y., and Qian, Y., Mater. Res. Soc. Bull. 35, 2009 (2000).Google Scholar
43. Winkler, U., Helv. Phys Acta 28, 633 (1955).Google Scholar
44. Morris, R. G., Redin, R. D., and Danielson, G. C., Phys. Rev. 109(6), 1909 (1958).Google Scholar
45. Redin, R. D., Morris, R. G., and Danielson, G. C., Phys. Rev. 109(6), 1916 (1958).Google Scholar
46. Lichter, B., J. Electrochem. Soc. 109, 819 (1962).Google Scholar
47. Martin, J. J., J. Phys. chem. Solids 33(5), 1139 (1972).Google Scholar
48. Zaitsev, V. K., Fedorov, M. I., Eremin, I.S., and Gurieva, E.A., in: Thermoelectrics Handbook: Macro- to Nano- structured Materials, edited by Rowe, D. M.. 29 (CRC Press, Boca Raton, FL, 2006).Google Scholar
49. Zaitsev, V. K., Fedorov, M. I., Gurieva, E. A., Eremin, I. S., Konstantinov, P. P., Samunin, A. Y., and Vedernikov, M. V., Phys. Rev. B 74(4), 045207 (2006).Google Scholar
50. Tani, J. and Kido, H., Physica B 364, 218 (2005).Google Scholar
51. Tani, J. and Kido, H., Intermetallics 15, (2007).Google Scholar
52. Bolshakov, K. A., Bulonkov, N. A., Rastorguev, L. N., and Tsirlin, M. S., Russian J. Inorg. Chem. 8(12), 1418 (1963).Google Scholar
53. Bolshakov, K. A., Bulonkov, N. A., Rastorguev, L. N., Umanskii, Y. S., and Tsirlin, M. S., Russian J. Inorg. Chem. 8, 2710 (1963).Google Scholar
54. Bulyaev, N. A., Saharov, V. V., and Goggishuili, O. S., Inorg. Mater. (in Russian) 6, 1744 (1970).Google Scholar
55. Nolas, G. S., Wang, D., and Lin, X., Phys. Sta. Sol. (RRL) 1, 223 (2007).Google Scholar
56. Nolas, G. S., Wang, D., and Beekman, M., Phys. Rev. B (in press).Google Scholar
57. Lin, X., Wang, D., and Nolas, G. S., (in press).Google Scholar
58. Tritt, T. M. in Thermal Conductivity: Theory, Properties, and Applications, edited, (Kluwer Academic, New York, 2004),Google Scholar