Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T12:34:36.699Z Has data issue: false hasContentIssue false

Building 3D materials from adjustable 2D-units; towards the Design of new Bi-based compounds

Published online by Cambridge University Press:  26 January 2011

M. Colmont
Affiliation:
Unité de Catalyse et de Chimie du Solide, UMR 8181, bât C7, 59652 Villeneuve d’Ascq cedex, France,
D. Endara
Affiliation:
Unité de Catalyse et de Chimie du Solide, UMR 8181, bât C7, 59652 Villeneuve d’Ascq cedex, France,
M. Huvé
Affiliation:
Unité de Catalyse et de Chimie du Solide, UMR 8181, bât C7, 59652 Villeneuve d’Ascq cedex, France,
S.V. Krivovichev
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia
O. Mentré
Affiliation:
Unité de Catalyse et de Chimie du Solide, UMR 8181, bât C7, 59652 Villeneuve d’Ascq cedex, France,
Get access

Abstract

In the Bi2O3-MO-P2O5 diagram, on the basis of previous compounds based on 2D-ribbon like units, we have predicted and prepared the infinite term. It contains [Bi2O2]2+ planes arranged within a never-observed crystallographic form. In this series, the ribbons-like units are polycations built on the linkage of n O(Bi,M)4 tetrahedra along their width and infinite in a perpendicular dimension. Hence, this novel form completes the continuous series of analogue compounds, whose building units now extend from the single chain to the infinite plane, via a number of discrete n values (2,3,4,5,6,7,8,9,10,11). The presented materials of formulae Bi4MP2O12 (M= Zn and Mg) roughly show the same crystal structure. However different arrangements of the groups located between the [Bi2O2]2+ planes are at the origin of a complex superstructure in the case of the zinc compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

i Rowsell, J. L. C. and Yaghi, O. M., Microporous and Mesoporous Materials 73 (2004) 3.Google Scholar
ii Mrotzek, A. and Kanatzidis, M. G., Acc. Chem. Res. 36 (2003) 111, H. Kabbour, L. Cario, Inorg. Chem. 45(6) (2003) 2713–2717 Google Scholar
iii(a) Abraham, F.; Cousin, O.; Mentré, O.; Ketatni, E. M. J. Solid State Chem. 2002, 167, 168. (b) Huvé, M.; Colmont, M.; Mentré, O. Inorg. Chem. 2006, 45(17), 6604. (c) Colmont, M.; Huvé, M.; Mentré, O. Inorg. Chem. 2006, 45, 6612. (d) Huvé, M.; Colmont, M.; Mentré, O. Chem. Mater. 2004, 16(13), 2628. (e) Colmont, M.; Huvé, M.; Ketatni, E. M.; Mentré, O. Solid State Sci. 2008, 10, 533. (f) Colmont, M.; Huvé, M.; Ketatni, E. M.; Abraham, F.; Mentré, O. J. Solid State Chem. 2003, 176, 221. (g) Ketatni, E. M.; Huvé, M.; Abraham, F.; Mentré, O. J. Solid State Chem. 2003, 172, 327. (h) Colmont, M.; Huvé, M.; Abraham, F.; Mentré, O. J. Solid State Chem. 2004, 177, 4149.Google Scholar
iv Huvé, M. Colmont, M. Lejay, M. Aschehoug, P. and Mentré, O. Chem. Mater. 2009, 21, 40194029 4019Google Scholar
v Joubert, O. Jouanneaux, A. and Ganne, M. Mater. Res. Bull., 29, 175, (1994).Google Scholar
vi Steinfink, H.; Lynch, V. J. Solid State Chem. 2004, 177, 1412 Google Scholar
vii SADABS V2.03, Bruker/Siemens Area detector absorption and other corrections, 2001.Google Scholar
viii(a) SAINTþ, Version 5.00; Bruker Analytical X-ray Systems: Madison, WI, (x2) 2001. (b) SADABS, Version 2.03; Bruker Analytical X-ray Systems:Madison, WI, (x2) 2001 (Bruker/Siemens Area detector absorption and other corrections). (c) Petricek, V.; Dusek, M.; Palatinus, L. JANA2000; Institute of Physics: Praha, Czech Republic, 005.Google Scholar
ix Krivovichev, S. V.; Armbruster, T.; Depmeier, W. J. Solid State Chem. 2004, 177, 1321.Google Scholar
x Mrotzek, A.; Kanatzidis, M. G. J. Solid State Chem. 2002, 167, 299 Google Scholar