Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T23:44:01.207Z Has data issue: false hasContentIssue false

Bowing Parameter of AlxGa1-xN

Published online by Cambridge University Press:  01 February 2011

Feng Yun
Affiliation:
Dept. of Electrical Engineering, Virginia Commonwealth University, Richmond, VA 23284;
Michael A. Reshchikov
Affiliation:
Dept. of Electrical Engineering, Virginia Commonwealth University, Richmond, VA 23284;
Lei He
Affiliation:
Dept. of Electrical Engineering, Virginia Commonwealth University, Richmond, VA 23284;
Thomas King
Affiliation:
Dept. of Electrical Engineering, Virginia Commonwealth University, Richmond, VA 23284;
M. Zafar Iqbal
Affiliation:
Dept. of Electrical Engineering, Virginia Commonwealth University, Richmond, VA 23284;
Hadis Morkoç
Affiliation:
Dept. of Electrical Engineering, Virginia Commonwealth University, Richmond, VA 23284;
Steve W. Novak
Affiliation:
Evans East, a member of the Evans Analytical Group, East Windsor, NJ 08520;
Luncun Wei
Affiliation:
Charles Evans and Associates, a member of the Evans Analytical Group, Sunnyvale, CA.
Get access

Abstract

AlxGa1-xN samples covering the entire range of alloy compositions, 0≤x≤1, were grown by plasma-assisted MBE on c-plane sapphire substrates. The aluminum mole fraction was determined, by three different techniques, namely, x-ray diffraction, secondary ion mass spectroscopy, and Rutherford backscattering spectrometry. The energy bandgaps of the alloys were obtained from low temperature reflectance spectra. The data lead to a bowing parameter of b=1.0 eV in relating the bandgap of the AlxGa1-xN alloy to its chemical composition. A discussion of bowing parameter determination is presented along with possible causes for the large dispersion in previously reported bowing parameter values.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lee, S. R., Lee, S. R., Wright, A. F., Crawford, M. H., Petersen, G. A., Han, J., and Biefeld, R. M., Appl. Phys. Lett. 74, 3344(1999), and references therein.Google Scholar
2 Jiang, H., Zhao, G. Y., Ishikawa, H., Egawa, T., Jimbo, T., and Umeno, M., J. Appl. Phys. 89, 1046(2001)Google Scholar
3 Steude, G., Meyer, B. K., Goldner, A., Hoffmann, A., Bertram, F., Christen, J., Amano, H., and Akasaki, I., Appl. Phys. Lett. 74, 2456(1999)Google Scholar
4 Ochalski, T. J., Gil, B., Lefebvre, P., Grandjean, M., Leroux, M., Massies, J., Makamura, S., and Morkoç, H., Appl. Phys. Lett. 74, 3353(1999)Google Scholar
5 Paduano, Q. S., Weyburne, D. W., Bouthillette, L. O., Alexander, M. N., 7th Int'l Workshop on Wide Bandgap IIINitrides, Richmond, VA, March 10-14, 2002.Google Scholar
6 Nikishin, S. A., Faleev, N. N., Zubrilov, A. S., Antipov, V. G., and Temkin, H., Appl. Phys. Lett. 76, 3028(2000)Google Scholar
7 Morkoç, H., Nitride Semiconductors and Devices, Springer, 1999.Google Scholar
8 Choyke, J. W. et al., unpublished.Google Scholar
9 Wagner, J., Obloh, H., Kunzer, M., Maier, M., Kohler, K., and Johs, B., J. Appl. Phys. 89, 2779(2000)Google Scholar
10 Özgür, Ümit, Webb-Wood, Grady, Everitt, Henry O., Yun, Feng, and Morkoç, Hadis, Appl. Phys. Lett. 79, 4103(2001)Google Scholar
11 Angerer, H., Brunner, D., Freudenberg, F., Ambacher, O., Stutzmann, M., Hopler, R., Metzger, T., Born, E., Dollinger, G., Bergmaier, A., Karsch, S., and Korner, H.-J., Appl. Phys. Lett. 71, 1504(1997)Google Scholar
12 Shan, W., Ager, J. W. III, Yu, K. M., Walukiewicz, W., Haller, E. E., Martin, M. C., McKinney, W. R., and Yang, W., J. Appl. Phys. 85, 8505(1999)Google Scholar
13 Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Hopler, R., Dimitrov, R., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 82, 5090(1997)Google Scholar