Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-07T11:09:15.573Z Has data issue: false hasContentIssue false

Blue Light by Second Harmonic Generation in Epitaxial PbTiO3 Thin Film Waveguide

Published online by Cambridge University Press:  15 February 2011

Wei-Yung Hsu
Affiliation:
Cornell University, Department of Materials Science and Engineering, Ithaca, NY14853
R. Raj
Affiliation:
Cornell University, Department of Materials Science and Engineering, Ithaca, NY14853
Get access

Abstract

Epitaxial PbTiO3 thin films have been grown on MgO substrate. The as grown PbTiO3 thin films were multi-domain with the existence of a-domain and c-domain. The amount of adomain can be reduced with the application SrTiO3 transitional layer, which also improve the crystalline quality and thus the nonlinear optical properties. Blue light generation in the PbTiO3/SrTiO3/MgO heterostructure was demonstrated based on waveguide mode dispersion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Risk, W. P, Optics and Photonics News, 10(1990).Google Scholar
2. Sugihara, O., Kinoshita, T., Okabe, M., Kunioka, S., Nonaka, Y., and Sasaki, K., Appl. Optics, 30, 2957 (1991).CrossRefGoogle Scholar
3. Tien, P.K., Ulrich, R., and Martin, R.J., Appl. Phys. Lett., 17, 447 (1970).Google Scholar
4. Lim, E.J., Fejer, M.M., Byer, R.L., and Kozlovsky, W.J., Electron. Lett. 25, 731 (1989).Google Scholar
5. Yamamoto, K., Mizuuchi, K., Takeshige, K., Sasai, Y., and Taniuchi, T., J. Appl. Phys. 70, 1947 (1991).Google Scholar
6. Laurell, F., Brown, J.B., and Bierlein, J.D., Appl. Phys. Lett., 60, 1064 (1992).CrossRefGoogle Scholar
7. Baumert, J.-C., Hoffnagle, J., and Gunter, P., SPIE, 492, 374 (1984).Google Scholar
8. Numerical Data and Functional Relation in Science and Technology, edited by Hellwege, K.-H and Hellwege, A.M. (Springer, Berlin, 1982), Vol.16aGoogle Scholar
9. Fork, D.K., Ponce, F.A., Tramotana, J.C., and Geballe, T.H., Appl. Phys. Lett. 58, 2294 (1991).Google Scholar
10. Hsu, W.Y. and Raj, R., AppI Phys. Lett. 60, 3105 (1992).CrossRefGoogle Scholar
11. Hsu, W.-Y, Stemmer, S., Ernst, F., Ruhle, M., and Raj, R., to be submitted to J. Am. Ceram. Soc.Google Scholar
12. Jerphagnon, J. and Kurtz, S.K., J. Appl. Phys., 41, 1667 (1970).Google Scholar
13. Bloembergen, N. and Pershan, P.S., Phys. Rev., 128, 606 (1962).Google Scholar
14. Shen, Y.R., The Principles of Nonlinear Optics, John Wiley & Sons, NY, NY, 1984, Chap. 7.Google Scholar
15. Dick, B., Gierulski, A., Marowsky, G., and Reider, G.A.. Appl. Phys., B 38, 107(1985).Google Scholar
16. Hsu, W.-Y., Crag, C.S., Gopalan, V., Gupta, M.C., Appl. Phys. Lett., 61, 2263 (1992).Google Scholar
17. Kwak, B.S., Erbil, A., Wilkens, B.J., Budai, J.D., Chisholm, M.F., and Boatner, L.A., Phys. Rev. Lett. 68, 3733(1992).Google Scholar
18. Heinz, T.F., Loy, M.M.T., and Thompson, W.A., Phys. Rev. Lett., 54, 63(1985).CrossRefGoogle Scholar