Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T07:59:39.419Z Has data issue: false hasContentIssue false

Bistable memory effect in chromium oxide junctions

Published online by Cambridge University Press:  10 February 2011

A. Sokolov
Affiliation:
University of Nebraska Lincoln, Department of Physics and Astronomy, 115 Brace Laboratory, Lincoln NE 68588–0111
C.-S. Yang
Affiliation:
University of Nebraska Lincoln, Department of Physics and Astronomy, 115 Brace Laboratory, Lincoln NE 68588–0111
E. Ovtchenkov
Affiliation:
University of Nebraska Lincoln, Department of Physics and Astronomy, 115 Brace Laboratory, Lincoln NE 68588–0111
L. Yuan
Affiliation:
University of Nebraska Lincoln, Department of Physics and Astronomy, 115 Brace Laboratory, Lincoln NE 68588–0111
S.-H. Liou
Affiliation:
University of Nebraska Lincoln, Department of Physics and Astronomy, 115 Brace Laboratory, Lincoln NE 68588–0111
B. Doudin
Affiliation:
University of Nebraska Lincoln, Department of Physics and Astronomy, 115 Brace Laboratory, Lincoln NE 68588–0111
Get access

Abstract

Magnetotransport properties of granular CrO2 /Cr2O3 films made of CrO2 crystals covered by 1– 2 nm native insulating Cr2O3 are presented. Electrical properties of a limited number of grains measured in series and parallel (10 to 15 grains) reveal intergrain tunneling characteristics. At lowest temperatures, a well pronounced zero bias anomaly indicates that impurities in the junctions block the electronic flow.

Hysteresis in the IV curves are observed at intermediate temperatures on zero-field cooled samples. Changing the polarity of a short excitation pulse (100ns) of amplitude smaller than 1 V triggers a change in the zero-bias resistance by 10–50%. These states are stable and well reproducible in the temperature interval ranging from 100K to 250K. Applying an external magnetic field cancels the IV hysteresis. The resistance of the devices in the kΩ range, the potential high-speed for writing and reading the resistance sate, make these systems interesting candidates for magnetic non-volatile memories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Prinz, G.A., Science 282, 1660 (1998).Google Scholar
[2] Gallagher, W. J. et al., J. Appl. Phys. 81, 3741 (1997).Google Scholar
[3] Bussman, K., Prinz, G. A., Cheng, S. F. and Wang, D., Appl. Phys. Lett. 75, 2476 (1999).Google Scholar
[4] Kikuchi, N. et al., J. Appl. Phys. 90, 6548 (2001).Google Scholar
[5] Dedkov, Yu. S. et al., Appl. Phys. Lett. 80, 4181 (2002).Google Scholar
[6] Soulen, R. J. Jr et al., Science 282, 85 (1998).Google Scholar
[7] Ji, Y. et al., Phys. Rev. Lett. 86, 5585 (2001)Google Scholar
[8] Gupta, A., Li, X. W. and Xiao, Gang, J. App. Phys., 87, 6073, (2000).Google Scholar
[9] Watts, S. M., et al., Phys. Rev. B, 61, 9621, (2000).Google Scholar
10] Suzuki, Katsuhiko and Tedrow, P.M., Appl. Phys. Lett., 74, 428 (1999).Google Scholar
[11] Liu, S. J. et al., Appl. Phys. Lett., 80, 4202, (2002).Google Scholar
[12] Stampe, P. A., Kennedy, R. J., Watts, S. M. and von Molnár, S., J. Appl. Phys., 89, 7696, (2001).Google Scholar
[13] Coey, J. M. D., Berkowitz, A. E., Balcells, L., and Putris, F. F., Phys. Rev. Lett., 80, 3815 (1998).Google Scholar
[14] Sokolov, A. et al., Europhys. Lett 58, 448 (2002).Google Scholar
[15] Berger, L., Phys. Rev. B 54, 93539358 (1996).Google Scholar
[16] Slonczewski, J., J. Magn. Magn. Mater. 159, L1 (1996).Google Scholar
[17] Myers, E.B. et al., Science 285, 867 (1999).Google Scholar
[18] Albert, F. J., Katine, J. A., Buhrman, R. A. and Ralph, D. C., Appl. Phys. Lett. 77, 3809 (2000).Google Scholar
[19] Sun, J. Z., J. Magn. Magn. Mater. 202, 157 (1999).Google Scholar
[20] Wegrowe, J.E. et al., Europhys. Lett. 45, 626 (1999).Google Scholar
[21] Tsoi, M et al., Phys. Rev. Lett. 80, 4281 (1998).Google Scholar
[22] Grollier, J. et al., Appl. Phys. Lett. 78, 36633665 (2001).Google Scholar
[23] Cheng, Ruihua et al., Appl. Phys. Lett. 79, 3122 (2001).Google Scholar
[24] Yuan, L. et al., submitted to J. Appl. Phys.Google Scholar
[25] Takahashi, S. and Maekawa, S., Phys. Rev. Lett. 80, 1758 (1998).Google Scholar
[26] Rowell, J. M. and Shen, L. Y. L., Phys. Rev. Lett. 17, 15 (1966)Google Scholar
[27] Borchers, J. A. et al., Phys. Rev. Lett 82, 2796 (1999).Google Scholar