Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T14:10:34.023Z Has data issue: false hasContentIssue false

The Bio-Nano-Process: Making Semiconductor Devices Using Protein Supramolecules.

Published online by Cambridge University Press:  01 February 2011

Ichiro Yamashita*
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial. Co., Ltd., Hikaridai 3-4, Seika, Kyoto, 619-0237, Japan CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan Materials Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
Get access

Abstract

The biology and semiconductor technology have progressed independently. There was a large distance between them and a substantial interdisciplinary research area was left untouched. Recently, this situation is gradually changing. Some researchers are stimulating semiconductor technology by introducing bio-molecules into the nano-fabrication process. We proposed a new process for fabricating functional nano-structure on a solid surface using protein supramolecules, which we named “Bio Nano Process” (BNP). We employed a cage-shaped protein, apoferritin and synthesized several kinds of nanoparticles (NP) in the apoferritin cavity. A two-dimensional array of them was made on the silicon wafer and this array was heat treated or UV/ozone treated. These processes produced a two-dimensional inorganic NP array on the silicon surface. The size of the NP is small enough to be used as quantum dot and the floating nanodots memory using this NP array is now under development. We also proposed another application of the BNP, making use of the obtained nanodot array as the nanometric etching mask. This was realized by employing the neutral beam etching and 7nm Si nano columns with high aspect ratio were fabricated. These experimental results demonstrate that the BNP can fabricate the inorganic nanostructure using protein supramolecules and the BNP opened up a biological path to nanoelectronics devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 DePamphilis, M. L., Adler, J., J. Bacteriol., 105, 76383 (1971)Google Scholar
2 DePamphilis, M. L., Adler, J., J. Bacteriol., 105, 384395 (1971)Google Scholar
3 DePamphilis, M. L., Adler, J., J. Bacteriol., 105, 396407 (1971)Google Scholar
4 Macnab, Robert M., Annu. Rev. Genet., 26 (1992) 131158 Google Scholar
5 Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Gyorgyi, A. G., Cohen, C., Cell, 97, 459470 (1999)Google Scholar
6 Massover, W. H., Micron., 24(4), 389437 (1993)Google Scholar
7 Yamashita, I., Thin Solid Films. 393, 1218 (2001)Google Scholar
8 Hikono, T., Uraoka, Y., Fuyuki, Y., Yamashita, I., Jpn. J. Appl. Phys., 42, L398–L399 (2003).Google Scholar
9 Harrison, P. M., Andrews, S. C., Artymiuk, P. J., Ford, G. C., Guest, J. R., Hirzmann, J., Lawson, D. M., Livingstone, J. C., Smith, J. M. A., Treffry, A., Yewdall, S. J., Advances in Inorg. Chem., 36, 449486 (1991)Google Scholar
10 Price, D. J. and Joshi, J. G., J. Biol. Chem. 258, 10873–l0880 (1983)Google Scholar
11 Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R., Mann, S., Nature 349, 684687 (1991)Google Scholar
12 Meldrum, F. C. Heywood, B. R., Mann, S., Science 257, (1992) 522523 Google Scholar
13 Meldrum, F. C., Douglas, T., Lei, S., Arosio, P., Mann, S., J. Inorg. Biochem. 58, 5968 (1995)Google Scholar
14 Douglas, T., Dickson, D.P.E., Betteridge, S., Charnock, J., Garner, C. D., Mann, S., Science 269, 5457 (1995)Google Scholar
15 Wong, K. K. W., Mann, S., Adv. Mater. 8(11), 928932 (1996)Google Scholar
16 Sczekan, S. R., Joshi, J. G., Biochim. Biophys. Acta, 990, 814 (1998)Google Scholar
17 Douglas, T., Stark, V. T., Inorg. Chem., 39, 18281830 (2000)Google Scholar
18 Okuda, M., Iwahori, K., Yamashita, I., Yoshimura, H., Biotechnology & Bioengineering, 84(2), 87194 (2003), 1Google Scholar
19 Yamashita, I. Hayashi, J. and Hara, M., Chem. Lett., 33(9), 11581159 (2004)Google Scholar
20 Furuno, T., Sasabe, H., Ulmer, K. M., Thin Solid Films 180, 2330 (1989)Google Scholar
21 Yoshimura, H., Scheybani, T., Baumeister, W., Nagayama, K., Langmuir 10, 32903295 (1994)Google Scholar
22 Scheybani, T., Yoshimura, H., Baumeister, W., Nagayama, K., Langmuir, 12(2), 431435 (1996)Google Scholar
23 Yoshii, S., Yamada, K., Matsukawa, N., and Yamashita, I., Jpn. J. Appl. Phys. 44(3), 15181523 (2005)Google Scholar
24 Samukawa, S., Sakamoto, K., and Ichiki, K., J.Vac. Sci. Tech. A20, 15661573 (2002)Google Scholar
25 Kubota, T., Baba, T., Samukawa, S., Kawashima, H., Uraoka, Y., Fuyuki, T., and Yamashita, I., Appl. Phys. Lett., 84, No. 9, 15551557 (2004)Google Scholar
26 Kubota, T., Baba, T., Kawashima, H., Uraoka, Y., Fuyuki, T., Yamashita, I., and Samukawa, Seiji, J.Vac. Sci. Tech. B23(2), 534539 (2005)Google Scholar