Skip to main content Accessibility help
×
Home

Biomedical Nanoscience: Electrospinning Basic Concepts, Applications, and Classroom Demonstration

  • Kristin J. Pawlowski (a1), Catherine P. Barnes (a1), Eugene D. Boland (a1), Gary E. Wnek (a2) and Gary L. Bowlin (a1)...

Abstract

Electrospinning is an old polymer processing technique that has recently been rediscovered. It allows for the easy creation of nano- to micro-fibers that can be collected to form a non-woven structure, which can then be used to fabricate novel structures for various applications including tissue engineering scaffolds, clothing, drug delivery vehicles, and filtration media. Current research in our laboratories is focused on the processing of synthetic and biological polymers to create materials with tailored properties and functions for tissue engineering scaffolds and various other medical applications. This technology is revolutionizing the biomaterials and nanotechnology fields and has prompted us to incorporate its history, basic concepts, and applications into diverse courses such as Biomaterials, Tissue Engineering, Polymers in Medicine, and Senior Design in Chemical and Biomedical Engineering. This Innovation of the Curriculum is timely and crucial for multiple reasons. There is a need for a systematic approach to course structure that ties historical concepts to new materials and processes and, ultimately, to practical applications. Combining this lecture organization with active learning in the forms of open discussions and hands-on experiments/demonstrations will enhance learning outcomes (including retention and critical thinking) at all levels of education. At the undergraduate and graduate levels in the courses mentioned, discussions of electrospinning can create a classroom atmosphere of creative thinking, and an actual demonstration of nanomaterial fabrication can serve as a visual aid to the students. More importantly, this curriculum innovation can be used at the high school level to demonstrate nanotechnology and its applications to medicine, which will aid in sparking the interest of future generations of tissue engineers, biomaterial scientists, nanotechnologists, and scientists and engineers in general.

Copyright

References

Hide All
1. Rayleigh, Lord, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 44, 184 (1882).
2. Bognitzki, M., Frese, T., Wendorff, J. H. et al. , Abstracts of Papers of the American Chemical Society 219, U491 (2000).
3. Reneker, D. H. and Chun, I., Nanotechnology 7 (3), 216 (1996).
4. Deitzel, J. M., Kleinmeyer, J., Harris, D. et al. , Polymer 42 (1), 261 (2001).
5. Zeleny, J., The Physical Review X (1), 1 (1917).
6. Kim, B. S. and Reneker, D. H., Polymer Composites 20 (1), 124 (1999).
7. Taylor, G., Proceedings of the Royal Society of London Series A 313, 453 (1969).
8. Doshi, J. and Reneker, D. H., Journal of Electrostatics 35 (2-3), 151 (1995).
9. Kim, J. S. and Lee, D. S., Polymer Journal 32 (7), 616 (2000).
10. Baumgarten, P.K., Journal of Colloid and Interface Science 36 (1), 71 (1971).
11. Srinivasan, G. and Reneker, D. H., Polymer International 36 (2), 195 (1995).
12. Chun, I., Reneker, D. H., Fong, H. et al. , Journal of Advanced Materials 31 (1), 36 (1999).
13. Fong, H., Chun, I., and Reneker, D. H., presented at the 24th Biennial Conference on Carbon, 1999 (unpublished).
14. Deitzel, J. M., Tan, N. C. Beck, Kleinmeyer, J. D. et al. , Report No. ARL-TR-1989, 1999.
15. Jaeger, R., Bergshoef, M. M., Batlle, C. M. I. et al. , Macromolecular Symposia 127, 141 (1998).
16. Kim, J. S. and Reneker, D. H., Polymer Engineering and Science 39 (5), 849 (1999).
17. Gibson, P. W., Schreuder-Gibson, H. L., and Pentheny, C., Journal of Coated Fabrics 28, 63 (1999).
18. Gibson, P. W., Schreuder-Gibson, H. L., and Rivin, D., AIChE Journal 45 (1), 190 (1999).
19. Reneker, D. H., Yarin, A. L., Fong, H. et al. , Journal of Applied Physics 87 (9), 4531 (2000).
20. Buchko, C. J., Kozloff, K. M., Sioshansi, A. et al. , Materials Research Society Symposium Proceedings 414, 23 (1996).
21. Buchko, C. J., Chen, L. C., Shen, Y. et al. , Polymer 40 (26), 7397 (1999).
22. How, T. V., United States of America Patent No. 4,552,707 (1985).
23. Chun, I., Doctoral Dissertation, University of Akron, 1995.
24. Stitzel, J. D., Master's Thesis, Virginia Commonwealth University, 2000.
25. Stitzel, J. D., Pawlowski, K. J., Wnek, G. E. et al. , Journal of Biomaterials Applications 15, 1 (2001).
26. Boland, E. D., Wnek, G. E., and Bowlin, G. L., The Encyclopedia of Biomaterials and Biomedical Engineering, eds.Bowlin, G. L. and Wnek, G. E. (Marcel Dekker, Inc., New York), Volume 2, 1246, (2004).
27. Boland, E. D., Wnek, G. E., Simpson, D. G. et al. , Journal of Macromolecular Science-Pure and Applied Chemistry 38 (12), 1231 (2001).
28. Boland, E.D., Telemeco, T., Simpson, D.G. et al. Journal of Biomedical Materials Research Part B, In Press.
29. Perry, D. and Craig, A., Collagen fibrils during development and maturation and their contribution to the mechanical attributes of connective tissue. (CRC Press, 1988).
30. Khaleduzzaman, M., Sumiyoshi, H., Ueki, Y. et al. , Genomics 45 (2), 304 (1997).
31. Thumb, W., Graf, C., Parslow, T. et al. , Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 55A (13), 2729 (1999).
32. Sparrow, J.T., Sparrow, D.A., Fernando, G. et al. , Biochemistry 31 (4), 1065 (1992).
33. How, T.V., Guidoin, R., and Young, S.K., Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 206 (2), 61 (1992).
34. Wong, W. H. and Mooney, D. J., in Synthetic Biodegradable Polymer Scaffold, eds. Atala, A., Mooney, D., Vacanti, J. P. et al. , Birkhauser, Boston, 50 (1997).
35. Matthews, J. A., Wnek, G. E., Simpson, D. G. et al. , Biomacromolecules 3 (2), 232 (2002).
36. Wnek, G.E., Carr, M.E., Simpson, D.G. et al. , Nano Letters 3, 213 (2003).
37. Carr, M.E. and Hermans, J.. Macromolecules 11, 46 (1978).
38. Carr, M.E. and Gabriel, D.A.. Macromolecules 13, 1473 (1980).
39. Woodhead, J.L., Nagaswami, C., Matsuda, M. et al. , Journal of Biological Chemistry 271, 4946 (1996).
40. Drift, A.C.M. van der and Poppema, A.. Fibrinogen: Structure, Functional Aspects, Metabolism. eds. Haverkate, F., Henschen, A., Nieuwenhuizen, W. and Straub, P. W., Walter de Gruyter, New York, NY, 3 (1983).
41. Kenawy, E., Layman, J., Matthews, J.A. et al. Biomaterials 24, 907 (2003).
42. Kessick, R., Fenn, J. and Tepper, G. C., Polymer 45, 2981 (2004).

Biomedical Nanoscience: Electrospinning Basic Concepts, Applications, and Classroom Demonstration

  • Kristin J. Pawlowski (a1), Catherine P. Barnes (a1), Eugene D. Boland (a1), Gary E. Wnek (a2) and Gary L. Bowlin (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed