Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T18:46:55.625Z Has data issue: false hasContentIssue false

Bio-Inspired Hydrogel-Calcium Carbonate Core-Shell Particles

Published online by Cambridge University Press:  26 February 2011

Yi-Yeoun Kim
Affiliation:
yiyeoun@gmail.com, Specialty Minerals Inc, Strategic Research & Discovery, 9 Highland Ave, Bethlehem, PA, 18017, United States, 6108613472, 6108613412
John W Catino
Affiliation:
john.catino@mineralstech.com, Specialty Minerals Inc, Analytical Services, 640 N. 13th Street, Easton, PA, 18042, United States
Gary P Tomaino
Affiliation:
gary.tomaino@mineralstech.com, Specialty Minerals Inc, Analytical Services, 640 N. 13th Street, Easton, PA, 18042, United States
Sherman D Cox
Affiliation:
sherman.cox@mineralstech.com, Specialty Minerals Inc, Strategic Research & Discovery, 9 Highland Ave, Bethlehem, PA, 18017, United States
Get access

Abstract

In this report, we present a bio-inspired encapsulation process to create nanocluster-assembled core-shell particles under aqueous, room temperature and non-toxic conditions. The approach to synthesize calcium carbonate core-shell particles is accomplished by employing a Polymer-Induced Liquid-Precursor (PILP) process. We demonstrate the amorphous mineral precursor is coated around a core of hydrogel nanoparticles, and subsequently solidified and crystallized. The synthesized core-shell particles are 300∼500nm diameter and ∼100 nm shell-thickness. We investigate the role of the hydrogel core of the particle using time-resolved XRD, thermal-XRD and thermal analysis. The organic hydrogel appears to influence the transformation of mineral phases, stabilizing the amorphous phase of calcium carbonate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 van Bommel, K. J. C.; Friggeri, A.; Shinkai, S., Angewandte Chemie-International Edition 2003, 42, (9), 980999.Google Scholar
2 Caruso, F., Chemistry-a European Journal 2000, 6, (3), 413419.Google Scholar
3 Zhong, Z. Y.; Yin, Y. D.; Gates, B.; Xia, Y. N., Advanced Materials 2000, 12, (3), 206–+.Google Scholar
4 Patel, V.; Kurz, A.; Ossenbeck, M.; Sheth, P.; Gower, L., Abstracts of Papers of the American Chemical Society 2002, 223, U379–U379.Google Scholar
5 Olszta, M. J.; Odom, D. J.; Douglas, E. P.; Gower, L. B., Connective Tissue Research 2003, 44, 326334.Google Scholar
6 Gower, L. B.; Odom, D. J., Journal of Crystal Growth 2000, 210, (4), 719734.Google Scholar
7 DiMasi, E.; Kwak, S. Y.; Amos, F. F.; Olszta, M. J.; Lush, D.; Gower, L. B., Physical Review Letters 2006, 97, (4).Google Scholar
8 Wang, T. X.; Colfen, H.; Antonietti, M., Journal of the American Chemical Society 2005, 127, (10), 32463247.Google Scholar
9 Addadi, L.; Raz, S.; Weiner, S., Advanced Materials 2003, 15, (12), 959970.Google Scholar
10 Loste, E.; Wilson, R. M.; Seshadri, R.; Meldrum, F. C., Journal of Crystal Growth 2003, 254, (1–2), 206–218.Google Scholar
11 Shen, Q.; Wei, H.; Zhou, Y.; Huang, Y. P.; Yang, H. R.; Wang, D. J.; Xu, D. F., Journal of Physical Chemistry B 2006, 110, (7), 29943000.Google Scholar
12 Estroff, L. A.; Addadi, L.; Weiner, S.; Hamilton, A. D., Organic & Biomolecular Chemistry 2004, 2, (1), 137141.Google Scholar
13 Nassif, N.; Pinna, N.; Gehrke, N.; Antonietti, M.; Jager, C.; Colfen, H., Proceedings of the National Academy of Sciences of the United States of America 2005, 102, (36), 1265312655.Google Scholar