Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T13:29:03.844Z Has data issue: false hasContentIssue false

Biocorrosion of AISI 4340 Steel

Published online by Cambridge University Press:  22 February 2012

Sabrina M. Rovetta
Affiliation:
Vale do Paraíba University, Av. Shishima Hifumi, 2911, São José dos Campos, SP, Brazil. Photonics Division, Instituto de Estudos Avançados, Trevo Cel. Av. José A. A. Amarante, 1, São José dos Campos, SP, Brazil.
Antonio J. Abdalla
Affiliation:
Photonics Division, Instituto de Estudos Avançados, Trevo Cel. Av. José A. A. Amarante, 1, São José dos Campos, SP, Brazil.
Sonia Khouri
Affiliation:
Vale do Paraíba University, Av. Shishima Hifumi, 2911, São José dos Campos, SP, Brazil.
Choyu Otani
Affiliation:
Physics Department, Instituto Tecnológico de Aeronáutica, Praça Mar. Eduardo Gomes, 50, São José dos Campos, SP, Brazil.
Walter Miyakawa
Affiliation:
Photonics Division, Instituto de Estudos Avançados, Trevo Cel. Av. José A. A. Amarante, 1, São José dos Campos, SP, Brazil.
Get access

Abstract

The objective of the present work is to evaluate the Penicillium candidum filamentous fungi biocorrosion effects on AISI 4340 steel. Small AISI 4340 steel blocks are exposed to a biocorrosion process inside glass tubes containing culture media (Sabouraud Dextrose HIMEDIA broth) inoculated with Penicillium candidum spores for 14 days, at 25ºC constant temperature. The surface microstructures are evaluated by scanning electron microscopy, atomic force microscopy, and the chemical composition by energy dispersive X-ray spectroscopy. Comparison of micrographies before and after biocorrosion shows that surface structures present morphological alterations, suggesting corrosion wear. Grain contours can no longer be visualized and oxygen content on the steel surface increases to 32% after biocorrosion. Besides, topographic parameters like root mean square roughness (Rms), arithmetic mean roughness (Ra) and mean roughness (Rz) increase 57%, 132%, and 71%, respectively, from their initial values. It is concluded that AISI 4340 steel is reasonably susceptible to corrosion.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vasconcelos, G., Costa, G. N. P., Mello, C. B., Antunes, E. F.. Mat. Sci. Forum 660661, 249251 (2010).Google Scholar
2. Abdalla, A. J., Carrer, I. R., Barboza, M. J. R., Moura Neto, C.: Proc. of 19th CBECiMaT - Brazilian Congress on Engineering and Materials Science, ref. 317-045, Campos de Jordão, SP, 2011. Available: http://www.cbecimat.com.br/detalhes.asp?Id=886 [August 26, 2011].Google Scholar
3. Ranieri, A., Baggio-Scheid, V. H., Suzuki, P. A., Abdalla, A. J.. Proc. of COBEM 2009-International Congress on Mechanical Engineering 01, 0106, 2009.Google Scholar
4. Abdalla, A. J., Baggio-Scheid, V. H.: Corros. Prot. Mater. 25(3), 9296 (2006).Google Scholar
5. Videla, H. A., Manual of biocorrosion. 1 rst ed., CRC Press, Inc., 1996.Google Scholar
6. Videla, H. A., Biotecnologia- Corrosão microbiológica. 1 rst ed., Edgard Blücher Ltda, São Paulo, 1986.Google Scholar
7. Silva, A. M. A., Santiago, T. M., Alves, C. R., Guedes, M. I. F., Freire, J. A. K., Vieira, R. H. S. F., da Silva, R. C.B.. Anti-corrosion Meth. Mat. 54, 289293 (2007).Google Scholar
8. Smirnov, V. F., Belov, D. V., Sokolova, T. N., Kuzina, O. V., Kartashov, V. R.. Appl. Biochem Microbiol. 44, 92196 (2008).Google Scholar