Skip to main content Accessibility help
×
Home

Beyond-The-Roadmap Technology: Silicon Heterojunctions, Optoelectronics, and Quantum Devices

  • Alan Seabaugh (a1), Roger Lake (a1), Bobby Brar (a1), Robert Wallacet (a2) and Glen Wilk (a2)...

Abstract

The roadmap for silicon device technology has been drawn, extending to the year 2010, and featuring a CMOS transistor with a gate length of 0.07 μm [1]. Beyond this point, silicon heterojunctions could provide a means to further device scaling. Silicon heterojunctions could also bring new devices to the silicon substrate including light emitters and detectors, and resonant tunneling diodes (RTDs). Today SiGe/Si and SiGeC/Si heterojunctions are receiving the greatest attention, but heterojunctions now being developed to realize silicon RTDs are increasing the heterojunction options for silicon-based quantum-well and optical devices. Here we outline the fundamental device requirements for silicon optical and tunneling devices and describe progress on silicon heterojunction development towards demonstration of silicon-based RTDs. Materials now under study include, ZnS, crystalline oxides and nitrides; new processes could provide methods for forming crystalline materials over amorphous barriers.

Copyright

References

Hide All
1. National Technology Roadmap for Semiconductors, SIA (1994).
2. Seabaugh, A. C., Brar, B., Broekaert, T., Frazier, G., and van der Wagt, P., 1997 GaAs IC Symp., pp. 119122.
3. Broekaert, T. P. E., Brar, B., van der Wagt, P., Morris, F., Moise, T., Frazier, G., and Beam, E. III, 1997 GaAs IC Symp., pp. 187190.
4. van der Wagt, P., Seabaugh, A., and Beam, E., III, 1996 IEDM Tech. Dig., pp. 425428.
5. Esaki, L., Phys. Rev. 109, 603604 (1958).
6. Tsai, H. H., Su, Y. K., Lin, H. H., Wang, R. L., and Lee, L., IEEE Electron Device Lett. 15, 357359 (1994).
7. Söderström, J. R., Chow, D. H., and McGill, T. C., Appl. Phys. Lett. 55, 10941096 (1989).
8. Lu, Z., Lockwood, D. J., and Baribeau, J. -M., Nature 378, 258260 (1995).
9. Hirose, M., Morita, M., and Osake, Y., Jpn. J. Appl. Phys. 16 Suppl. 16–1, 561–4 (1977).
10. Lake, R., Brar, B., Wilk, G. D., Seabaugh, A. C., and Klimeck, G., 1997 Int. Symp. Comp. Semicond.
11. Wei, Y., Wallace, R. M., and Seabaugh, A., Appl. Phys. Lett. 69, 12701272 (1996).
12. Wei, Y., Wallace, R. M., and Seabaugh, A. C., J. Appl. Phys. 81, 64156424 (1997).
13. Kolodzey, J., Chen, F., Ormer, B. A., Guerin, D., and Shah, S. I., Thin Solid Films 302, 201203 (1997).
14. Brar, B., Wilk, G. D., Seabaugh, A. C., Appl. Phys. Lett. 69, 27282730 (1996).
15. Romano, L. T., Bringans, R. D., Zhou, X., and Kirk, W. P., Phys. Rev. B 52, 11202– (1995).
16. Zhou, X., Jiang, S., and Kirk, W. P., J. Appl. Phys. 82, 22512262 (1997).
17. Brar, B., Steinhoff, R., Seabaugh, A., Zhou, X., Jiang, S., and Kirk, W. P., 1997 Int. Symp. Comp. Semicond.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed