Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T15:39:58.528Z Has data issue: false hasContentIssue false

Behavior of Metastable Te Donor Concentrations in Q-Switched Ruby Laser Annealed GaAs

Published online by Cambridge University Press:  15 February 2011

P. Pianetta
Affiliation:
Hewlett-Packard Laboratories, 1501, Page Mill Road, Palo Alto, California, USA
J. Amano
Affiliation:
Hewlett-Packard Laboratories, 1501, Page Mill Road, Palo Alto, California, USA
G. Woolhouse
Affiliation:
Hewlett-Packard Laboratories, 1501, Page Mill Road, Palo Alto, California, USA
C. A. Stolte
Affiliation:
Hewlett-Packard Laboratories, 1501, Page Mill Road, Palo Alto, California, USA
Get access

Abstract

The thermal behavior of Te implanted, laser annealed GaAs was investigated by helium backscattering spectroscopy and transmission electron microscopy in order to correlate structural changes with the two stage reduction in the carrier concentration due to post laser anneal heating above 200°C. The activation energy for stage one which occurs in the range 200–400°C was determined to be approximately 1.3 eV. Post laser anneal heating at 450°C caused no observable structural changes. On the other hand, 850°C post laser anneal heating induced the formation of precipitates and dislocation loops as well as narrowing the channeling half-angle of Te by about 11%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pianetta, P. A., Stolte, C. A. and Hansen, J. L., Appl. Phys. Lett. 36, 597 (1980).Google Scholar
2. Sealy, B. J., Kular, S. S., Stephens, K. G., Croft, R. and Palmer, A., Electron. Lett. 14, 720 (1978).CrossRefGoogle Scholar
3. Tandon, J. L., Nicolet, M. A., Tseng, W. F., Eisen, F. H., Campisano, S. U., Foti, G. and Rimini, E., Appl. Phys. Lett. 34, 597 (1979).Google Scholar
4. Badawi, M. M., Akintunde, J. A., Sealy, B. J. and Stephens, K. G., Electron.Lett. 15, 447 (1979).Google Scholar
5. Inada, T., Tokunaga, K. and Taka, S., Appl. Phys. Lett. 35, 546 (1979).Google Scholar
6. Pianetta, P. A., Stolte, C. A. and Hansen, J. L., in Laser and Electron Beam Processing of Materials, eds. White, C. W. and Peercy, P. S. (Academic Press, New York, 1980) p. 328; andCrossRefGoogle Scholar
Amano, J., Pianetta, P. A. and Stolte, C. A., Appl. Phys. Lett. (15 November 1980).Google Scholar
7. Chu, W. K., Mayer, J. N. and Nicolet, M. A., Backscattering Spectrometry, (Academic Press, New York, 1978).Google Scholar
8. Appolo Lasers Model 35, C/N 26120.Google Scholar
9. Van der Pauw, L. J., Philips Res. Rep. 13, 1 (1958).Google Scholar
10. Damask, A. C. and Dienes, G. J., Point Defects in Metals, (Gordon and Breach, New York 1963) p. 146.Google Scholar
11. Kressel, K., Nelson, H., MacFarlane, S. H., Abrahams, M. S., Lefur, P., and Buiocchi, C. J., J. Appl. Phys., 40 3589 (1969).Google Scholar
12. Ashby, M. F. and Brown, L. M., Phil. Mag. 8, 1083 (1963).Google Scholar
13. Kressel, H., Hawrylo, F. Z., Abrahams, M. S. and Buiocchi, C. J., J. Appl. Phys. 39, 5139 (1968).Google Scholar
14. Potts, H. R. and Pearson, G. L., J. Appl. Phys. 37, 2098 (1966).Google Scholar
15. Hwang, C. J., J. Appl. Phys. 40, 4584 (1969).Google Scholar