Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-23T21:38:51.024Z Has data issue: false hasContentIssue false

Behavior Of Fluorine In N-AlInAs Layers Under Bias-Temperature Stresses

Published online by Cambridge University Press:  15 February 2011

Y Yamamoto
Affiliation:
Optoelectronic & Microwave Devices Laboratory, Mitsubishi Electric Corporation, 4-1, Mizuhara, Itami, Hyogo, 664, Japan, yyamamot@oml.melco.co.jp
N. Hayafuji
Affiliation:
Optoelectronic & Microwave Devices Laboratory, Mitsubishi Electric Corporation, 4-1, Mizuhara, Itami, Hyogo, 664, Japan, yyamamot@oml.melco.co.jp
K. Sato
Affiliation:
Optoelectronic & Microwave Devices Laboratory, Mitsubishi Electric Corporation, 4-1, Mizuhara, Itami, Hyogo, 664, Japan, yyamamot@oml.melco.co.jp
M. Otsubo
Affiliation:
Optoelectronic & Microwave Devices Laboratory, Mitsubishi Electric Corporation, 4-1, Mizuhara, Itami, Hyogo, 664, Japan, yyamamot@oml.melco.co.jp
Get access

Abstract

The electrical degradation of AlInAs /GaInAs high electron mobility transistor (HEMT) due to the fluorine contamination is quantitatively explained through the comprehensive annealing experiments and bias-temperature tests. The thermal degradation rate is found to be mainly determined by the following electrochemical reaction of fluorine with donor species after the quite fast diffusion of fluorine into the AlInAs layer. It is also confirmed that the thermal degradation is stringently affected by the electric field resulting in the one-sided degradation near the anode. These findings are important knowledges to improve the reliability of AlInAs/GaInAs HEMT under the DC accelerated life test at high temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mishra, U. K., Brown, A. S., Rosenbaum, S. E., Hooper, C. E., Pierce, M. W., Delaney, M. J., Vaughn, S., and White, K., IEEE Electron Device Lett. 9, 647 (1988).Google Scholar
2. Smith, P. M., Liu, S. M. J., Kao, M. Y., Ho, P., Wang, S. C., Duh, K. H. G., Fu, S. T., and Chao, P. C., IEEE Microwave and Guided Wave Lett. 5, 230 (1995).Google Scholar
3. Nguyen, L. D., Brown, A. S., Thompson, M. A., and Jelloian, L. M., IEEE Trans. Electron Dev., 39, 2007 (1992).Google Scholar
4. Rosenbaum, S. E., Jelloian, L. M., Brown, A. S., Thompson, M. A., Matloubian, M. A., Larson, L. E., Lohr, R. F., Kormanyos, B. K., Reibez, G. M., and Katehi, L. P. B., IEEE IEDM Tech. Dig. 1993, 924.Google Scholar
5. Ashizawa, Y., Nozaki, C., Noda, T., Sasaki, A., Fujita, S., Solid-State Electron. 38, 1627 (1995).Google Scholar
6. Sasaki, H., Yajima, K., Yoshida, N., Ishida, T., Hattori, R., Sonoda, T., Ishihara, O., Takamiya, S., Konishi, R., and Ando, K., J. Electronic Mat. 25, 559 (1996).Google Scholar
7. Hayafuji, N., Yamamoto, Y., Yoshida, N., Sonoda, T., Takamiya, S., and Mitsui, S., Appl. Phys. Lett. 66, 863 (1995).Google Scholar
8. Yamamoto, Y., Hayafuji, N., Fujii, N., Kadoiwa, K., Yoshida, N., Sonoda, T., and Takamiya, S., J. Electronic Mat., 25, 685 (1996).Google Scholar
9. Hayafuji, N., Yamamoto, Y., Fujii, N., Sonoda, T., and Takamiya, S., (Mater. Res. Soc. Symp. Proc. 417, Pittsburgh, PA, 1996) pp. 415–420.Google Scholar
10. Wakejima, A., Onda, K., Fujihara, A., Mizuki, E., Kuzuhara, M., and Kanamori, M., Tech. Report of IEICE, ED96–108, CPM96–86, 67 (1996) (unpublished).Google Scholar