Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T12:14:27.586Z Has data issue: false hasContentIssue false

Beem Investigation of Oxide and Sulfide Passivated GaAs

Published online by Cambridge University Press:  25 February 2011

A. Alec Talin
Affiliation:
UCLA Dept. of Chemistry/Solid State Science Center, Los Angeles, CA 90024–1569
R. Stanley Williams
Affiliation:
UCLA Dept. of Chemistry/Solid State Science Center, Los Angeles, CA 90024–1569
Karen L. Kavanagh
Affiliation:
UCSD Dept. of Electrical and Computer Engineering, La Jolla, CA 92093–0407
Get access

Abstract

Ballistic Electron Emission Microscopy (BEEM) was used to investigate the effects of a sulfide interfacial layer on the electronic properties of the Au/n-GaAs interface. Two diodes were simultaneously prepared in UHV by evaporating Au onto (100)GaAs substrates which were either treated with (NH4)2S or NH4OH etching solutions prior to Au deposition. Auger electron spectroscopy was used in situ to monitor the surface chemical composition. The effective Schottky barrier (SB) height was measured with BEEM at 10 different locations on the surface of each diode. The (NH4)2S treatment increased the average barrier height and reduced the spread in the values, as compared to the contact formed on the NH4OH treated GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).Google Scholar
2. Carpenter, M. S., Melloch, M. R., and Dungan, T. E., Appl. Phys. Lett. 53, 1 (1988).Google Scholar
3. Talin, A. A., Williams, R. S., Koutselas, I., and Kavanagh, K. L., (to be published).Google Scholar
4. Bell, L. D. and Kaiser, W. J., Phys. Rev. Lett. 61, 2368 (1988).Google Scholar
5. Hecht, M. H., Bell, L. D., Kaiser, W. J., and Grunthaner, F. J., Appl. Phys. Lett. 55 780 (1989).Google Scholar
6. Shen, T. H., Elliott, M., Fowell, A. E., Cafolla, A., Richardson, B. E., Westwood, D., and Williams, R. H., J. Vac. Sci. Technol. B 9 2219 (1991).Google Scholar
7. Garner, C. M., Su, C. Y., Saperstein, W. A., Jew, K. G., Lee, C. S., Pearson, G. L., and Spicer, W. E., J. Appl. Phys. 50, 3376 (1979).Google Scholar
8. Talin, A. A., Ohlberg, D. A. A., Williams, R. S., Sullivan, P., Williams, B. D., Koutselas, I., and Kavanagh, K. L., (submitted to Appl. Phys. Lett.).Google Scholar
9. Kowalczyk, S. P., Waldrop, J. R., and Grant, R. W., J. Vac. Sci. Technol. 19, 611 (1981).Google Scholar
10. Tung, R. T., Appl. Phys. Lett. 58, 2821 (1991).Google Scholar