Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T21:21:56.672Z Has data issue: false hasContentIssue false

Barriers to the Nucleation of Methyl Groups on the Diamond (111) Surface

Published online by Cambridge University Press:  21 February 2011

Steven M. Valone*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Questions about the mechanism of diamond film growth by low-pressure, plasma-assisted chemical vapor deposition methods have persisted for some time now. As an attempt to explore one aspect of the problem, we examine the energetics of several adsorbed diamond (111) surfaces. The adsorbates are mixtures of methyl groups and hydrogen atoms. The model for these systems is the molecular orbital hamiltonian of Dewar and coworkers.

From these calculations we find that H adsorbtion is preferred due both to bond energy and steric effects. Thus, nucleation of a cluster of three or more methyl groups, as assumed in earlier work, is energetically very demanding.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chauhan, S. P., Angus, J. C. and Gardner, N., J. Appl. Phys. 47, 4764 (1976); M. Kamo, Y. Sato, S. Matsumo and N. Setaka, J. Cryst. Growth 62, 642 (1983); D. V. Fedoseev, V. P. Varnin and B. V. Derygin, Russian Chem. Rev. 53(5), 435 (1984); Y. Saito, S. Matsuda and S. Nigita, J. Mater. Sci. Lett. 5, 565 (1986); S. Matsumoto, M. Hino, and T. Kobayshi, Appl. Phys. Lett. 51, 737 (1987); R. Messier, K. E. Spear, A. R. Badzian and R. Roy, J. Metals September , 8 (1987); First International Conference on the New Diamond Science and Technology , Keidanrer Kaikan, Japan, Oct. 24–26, 1988 and Extended Abstracts for the Technology Update on Diamond Films , Spring MRS Meeting, San Diego, CA, 1989.Google Scholar
2. Pandey, K. C., Phys. Rev. B 25, 4338 (1982).Google Scholar
3. Vanderbilt, D. and Louie, S. G., Phys. Rev. B 29, 7099 (1984); R. Dovesi, C. Pisani, C. Roetti and J. M. Ricarti, Surf. Sci. 185, 120 (1984); V. Barone, F. Lelj, N. Russo, G. Abbate, Solid State Comm. 49, 925 (1984).Google Scholar
4. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Stewart, J. J. P., J. Amer. Chem. Soc. 107, 3902 (1985); M. J. S. Dewar and D. M. Storch, J. Amer. Chem. Soc. 107, 3898 (1985); M. J. S. Dewar and W. Thiel, J. Amer. Chem. Soc. 99, 4899 (1977); R. C. Bingham, M. J. S. Dewar and D. H. Lo, J. Amer. Chem. Soc. 97, 1285 (1975).Google Scholar
5. Tsuda, M., Nakajima, M. and Oikawa, S., J. Amer. Chem. Soc. 108, 5780 (1986).Google Scholar
6. Freeman, D. L. and Doll, J. D., J. Chem. Phys. 78, 6002 (1983); 79, 2343 (1983).Google Scholar