Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T17:34:07.763Z Has data issue: false hasContentIssue false

Barrier Height Reduction at the Pd-Ge/n-GaAs Interface

Published online by Cambridge University Press:  26 February 2011

P. L. Meissner*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
J. C. Bravman
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
T. Kendelewicz
Affiliation:
Stanford Electronics Laboratory, Stanford University, Stanford, CA 94305
C. J. Spindt
Affiliation:
Stanford Electronics Laboratory, Stanford University, Stanford, CA 94305
A. Herrera-Gómez
Affiliation:
Stanford Electronics Laboratory, Stanford University, Stanford, CA 94305
W. E. Spicer*
Affiliation:
Stanford Electronics Laboratory, Stanford University, Stanford, CA 94305
A. J. Arko
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM
*
Current address: Spectrum Analysis, Inc. 41626 Mahoney St., Fremont, CA 94538
Stanford Asherman Professor of Engineering.
Get access

Abstract

We present the first direct measurements showing changes in the Schottky barrier height for ohmic Pd-Ge contacts to n-type GaAs. The barrier height and interface chemistry were investigated with high resolution synchrotron ultraviolet photoemission spectroscopy. Interfaces were formed by the deposition of one layer each of Pd and Ge on the GaAs substrate, where the deposition sequence was varied to allow a more quantitative determination of the role of each element. A reduction of 0.35 eV in the barrier height occurred in the case where Pd was deposited first. This reduction can be described by a model in which interface states are compensated by charge from As n-type doping of the Ge layer in the Ge-GaAs heterojunction. The dramatic change in barrier height seen when Pd is deposited first contrasts sharply with the stable barrier height observed for the case where the Ge was deposited first, a constant barrier of 0.75 eV was found after every deposition and annealing step. This stability was correlated with constant Ga and As concentrations in the Ge and a relatively low overall As concentration in the overlayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwartz, B., Ohmic Contacts to Semiconductors, Electrochemical Soc., NY (1969).Google Scholar
2. Sinha, A. K., Smith, T. E., Levinstein, H. J., IEEE Trans. Electron. Dev., ED22 (5), 218, (1975).CrossRefGoogle Scholar
3. Marshall, E. D., Zhang, B., Wang, L. C., Jiao, P. F., Chen, W. X., Sawada, T., Lau, S. S., Kavanagh, K. L., Kuech, T. F., J. Appl. Phys., 62 (3), 942 (1987).Google Scholar
4. Sze, S. M., Physics of Semiconductor Devices, Second Editions, John Wiley and Sons, NY, NY (1981).Google Scholar
5. Herrera-Gómez, H., Meissner, P. L., Bravman, J. C., Spicer, W. E., unpublished.Google Scholar
6. Rai, A. K., Ezis, A., McCormick, A. W., Petford-Long, A. K., Langer, D. W., J. Appl. Phys., 61 (9), 4682 (1987).CrossRefGoogle Scholar
7. Yu, L. S.., Wang, L. C., Marshall, E. D., Lau, S. S., Kuech, T. F., J. Appl. Phys., 65 (4), 1921 (1989).Google Scholar
8. Waldrop, J. R., Grant, R. W., Appl. Phys. Lett., 50 (5), 250 (1987).CrossRefGoogle Scholar
9. Grant, R. W., Waldrop, J. R., J. Vac. Sci. Technol. B, 5, 1015 (1987).Google Scholar
10. Chiaradia, P., Katnani, A. D., Sang, H. W. Jr, Bauer, R. S., Phys. Rev. Lett., 52 (14), 1246 (1984).Google Scholar
11. Marshall, E. D., Lau, S. S., Palmstrøm, C. J., Sands, T., Schwartz, C. L., Scwarz, S. A., Harbison, J. P., Florez, L. T., Mat. Res. Soc. Symp. Proc, 148, 163 (1989).Google Scholar
12. Schwarz, S. A., Palmstrøm, C. J., Schwartz, C. L., Sands, T., Shantharma, L. G., Harbison, J. P., Florez, L. T., Marshall, E. D., Han, C. C., Lau, S. S., Allen, L. H., Mayer, J. W., J. Vac. Sci. Technol. A, 8 (3), 2079 (1990).CrossRefGoogle Scholar
13. Ludeke, R., Landgren, G., Phys. Rev. B, 33 (8), 5526 (1986).Google Scholar
14. Kendelewicz, T., Miyano, K., Meissner, P. L., Cao, Y., Spicer, W. E., J. Vac. Sci. Technol. A, May/June (1991).Google Scholar
15. Vitomirov, I. M., Aldao, C. M., Lin, Z., Gao, Y., Trafas, B. M., Weaver, J. H., Phys. Rev. B, 38 (15), 10776 (1988).CrossRefGoogle Scholar
16. Aldao, C. M., Vitomirov, I. M., Xu, F., Weaver, J. H., Phys. Rev. B, 40 (6), 3711 (1989).CrossRefGoogle Scholar
17. Meissner, P. L., Bravman, J. C., Kendelewicz, T., Miyano, K., Spicer, W. E., Woicik, J. C., Bouldin, C., Mater. Res. Soc. Symp. Proc, 181, 265 (1990).Google Scholar
18. Canali, C., Mayer, J. W., Ottaviani, G., Sigurd, D., vand der Weg, W., Appl. Phys. Lett., 25 (1), 3 (1974).CrossRefGoogle Scholar