Skip to main content Accessibility help
×
Home

Bandgap Shifting of an Ultra-Thin InGaAs/InP Quantum Well Infrared Photodetector via Rapid Thermal Annealing

  • D. K. Sengupta (a1), S. Kim (a2), H. C. Kuo (a2), A. P. Curtis (a2), K. C. Hsieh (a2), S. G. Bishop (a2), M. Feng (a2), G. E. Stillman (a2), S. D. Gunapala (a1), S. V. Bandara (a1), Y. C. Chang (a3) and H. C. Liu (a4)...

Abstract

We demonstrate that SiO2 cap rapid thermal annealing in ultra-thin p-type InGaAs/InP quantum wells can be used to produce large blue shifts of the band edge. A substantial bandgap blue shift, as much as 292.5 meV at 900°C has been measured and the value of the bandgap shift can be controlled by the anneal time. Theoretical modeling of the intermixing effect on the energy levels is performed based on the effective bond-orbital method, and we obtain a very good fit to the photoluminescence data. Compared to the as-grown detector, the peak spectral response of the annealed detector was shifted to longer wavelength without any major degradation in the responsivity characteristics.

Copyright

References

Hide All
1. Esaki, L. and Tsu, R., IBM J. Res. Develop. 14, 61 (1970).
2. Levine, B.F., J. Appl. Phys. 74, R1–R81 (1993).
3. Gunapala, S. D., Bandara, S. V., Liu, J. K., Hong, W., Sundaram, M., Carralejo, R., Shott, C. A., Maker, P. D., and Muller, R. E., SPIE proceedings, V 3061, 124 (1997).
4. Gunapala, S. D., Bandara, S. V., Physics of Thin Films, edited by Francombe, M. H., and Vossen, J. L., Vol. 21, pp. 113237, Academic Press, NY, (1995).
5. Grave, I., Shakouri, A., Kuze, N., and Yariv, A., Appl. Phys. Lett. 60, 2362 (1992).
6. Kock, A., Gornick, E., Abstreiter, G., Bohn, G., Walther, M., and Weimann, G., Appl. Phys. Lett. 60, 2011 (1992).
7. Wang, Y. H., Li, Sheng S., and Ho, P., Appl. Phys. Lett. 62, 93 (1993).
8. Martinet, E., Rosencher, E., Luc, F., Bois, Ph., Costard, E., and Delaitre, S., Appl. Phys. Lett. 61, 246 (1992).
9. Kheng, K., Ramsteiner, M., Schneider, H., Ralston, J. D., Fuchs, F., and Koidl, P., Appl. Phys. Lett. 61, 666 (1992).
10. Deppe, D. G., Guido, L. J., Holonyak, N. Jr., Hseih, K. C., Burnham, R. D., Thornton, R. L. and Paoli, T. L., Appl. Phys. Lett. 59, 510 (1986).
11. Jackson, S. L., Baillargeon, J. N., Curtis, A. P., Liu, X., Baker, J. E., Malin, J. I., Hseih, K. C., Bishop, S. G., Cheng, K. Y., and Stillman, G. E., J. Vac. Sci. Technol. B 11, 1045 (1993).
12. Chang, Y. C., Phys. Rev. B 37, 8215 (1988).
13. Chang, Y. C., Cheung, J., Chiou, A., and Khosnevisan, M., J. Appl. Phys. 66, 829 (1989).
15. Bir, G. L. and Pikus, G. E., Symmetry and Strain Induced Effects in Semiconductors (Halsted, United Kingdom, 1974).
16. Choy, , J. Appl. Phys. 82, 3861 (1997).

Bandgap Shifting of an Ultra-Thin InGaAs/InP Quantum Well Infrared Photodetector via Rapid Thermal Annealing

  • D. K. Sengupta (a1), S. Kim (a2), H. C. Kuo (a2), A. P. Curtis (a2), K. C. Hsieh (a2), S. G. Bishop (a2), M. Feng (a2), G. E. Stillman (a2), S. D. Gunapala (a1), S. V. Bandara (a1), Y. C. Chang (a3) and H. C. Liu (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.