Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-02T01:40:24.754Z Has data issue: false hasContentIssue false

Bandgap Shifting of an Ultra-Thin InGaAs/InP Quantum Well Infrared Photodetector via Rapid Thermal Annealing

Published online by Cambridge University Press:  10 February 2011

D. K. Sengupta
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
S. Kim
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
H. C. Kuo
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
A. P. Curtis
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
K. C. Hsieh
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
S. G. Bishop
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
M. Feng
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
G. E. Stillman
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
S. D. Gunapala
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
S. V. Bandara
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Y. C. Chang
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
H. C. Liu
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada KIA 0R6
Get access

Abstract

We demonstrate that SiO2 cap rapid thermal annealing in ultra-thin p-type InGaAs/InP quantum wells can be used to produce large blue shifts of the band edge. A substantial bandgap blue shift, as much as 292.5 meV at 900°C has been measured and the value of the bandgap shift can be controlled by the anneal time. Theoretical modeling of the intermixing effect on the energy levels is performed based on the effective bond-orbital method, and we obtain a very good fit to the photoluminescence data. Compared to the as-grown detector, the peak spectral response of the annealed detector was shifted to longer wavelength without any major degradation in the responsivity characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Esaki, L. and Tsu, R., IBM J. Res. Develop. 14, 61 (1970).Google Scholar
2. Levine, B.F., J. Appl. Phys. 74, R1–R81 (1993).Google Scholar
3. Gunapala, S. D., Bandara, S. V., Liu, J. K., Hong, W., Sundaram, M., Carralejo, R., Shott, C. A., Maker, P. D., and Muller, R. E., SPIE proceedings, V 3061, 124 (1997).Google Scholar
4. Gunapala, S. D., Bandara, S. V., Physics of Thin Films, edited by Francombe, M. H., and Vossen, J. L., Vol. 21, pp. 113237, Academic Press, NY, (1995).Google Scholar
5. Grave, I., Shakouri, A., Kuze, N., and Yariv, A., Appl. Phys. Lett. 60, 2362 (1992).Google Scholar
6. Kock, A., Gornick, E., Abstreiter, G., Bohn, G., Walther, M., and Weimann, G., Appl. Phys. Lett. 60, 2011 (1992).Google Scholar
7. Wang, Y. H., Li, Sheng S., and Ho, P., Appl. Phys. Lett. 62, 93 (1993).Google Scholar
8. Martinet, E., Rosencher, E., Luc, F., Bois, Ph., Costard, E., and Delaitre, S., Appl. Phys. Lett. 61, 246 (1992).Google Scholar
9. Kheng, K., Ramsteiner, M., Schneider, H., Ralston, J. D., Fuchs, F., and Koidl, P., Appl. Phys. Lett. 61, 666 (1992).Google Scholar
10. Deppe, D. G., Guido, L. J., Holonyak, N. Jr., Hseih, K. C., Burnham, R. D., Thornton, R. L. and Paoli, T. L., Appl. Phys. Lett. 59, 510 (1986).Google Scholar
11. Jackson, S. L., Baillargeon, J. N., Curtis, A. P., Liu, X., Baker, J. E., Malin, J. I., Hseih, K. C., Bishop, S. G., Cheng, K. Y., and Stillman, G. E., J. Vac. Sci. Technol. B 11, 1045 (1993).Google Scholar
12. Chang, Y. C., Phys. Rev. B 37, 8215 (1988).Google Scholar
13. Chang, Y. C., Cheung, J., Chiou, A., and Khosnevisan, M., J. Appl. Phys. 66, 829 (1989).Google Scholar
15. Bir, G. L. and Pikus, G. E., Symmetry and Strain Induced Effects in Semiconductors (Halsted, United Kingdom, 1974).Google Scholar
16. Choy, , J. Appl. Phys. 82, 3861 (1997).Google Scholar