Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T12:51:14.855Z Has data issue: false hasContentIssue false

Band Offsets of InAsxP1−X/InP Strained Layer Quantum Wells Grown by Lp-Movpe Using TBAs

Published online by Cambridge University Press:  28 February 2011

M. Beaudoin
Affiliation:
Groupe de recherches en physique et technologie des couches minces (GCM) and Dép. de génie physique, École Polytechnique, C.P. 6079 succ."Centre-Ville", Montréal, Québec. H3C 3A7
R.A. Masut
Affiliation:
Groupe de recherches en physique et technologie des couches minces (GCM) and Dép. de génie physique, École Polytechnique, C.P. 6079 succ."Centre-Ville", Montréal, Québec. H3C 3A7
L. Isnard
Affiliation:
Groupe de recherches en physique et technologie des couches minces (GCM) and Dép. de génie physique, École Polytechnique, C.P. 6079 succ."Centre-Ville", Montréal, Québec. H3C 3A7
P. Desjardins
Affiliation:
Groupe de recherches en physique et technologie des couches minces (GCM) and Dép. de génie physique, École Polytechnique, C.P. 6079 succ."Centre-Ville", Montréal, Québec. H3C 3A7
A. Bensaada
Affiliation:
Groupe de recherches en physique et technologie des couches minces (GCM) and Dép. de génie physique, École Polytechnique, C.P. 6079 succ."Centre-Ville", Montréal, Québec. H3C 3A7
G. L'Espérance
Affiliation:
Centre de caractérisation microscopique des matériaux (CM)2 and Dép. de métallurgie et de génie des matériaux, École Polytechnique, C.P. 6079 succ."Centre-Ville", Montréal, Québec. H3C 3A7
R. Leonelli
Affiliation:
Groupe de recherches en physique et technologie des couches minces (GCM) and Dép. de physique, Université de Montréal, C.P. 6128 succ."Centre-Ville", Montréal, Québec. H3C 3J7
Get access

Abstract

Low temperature optical absorption spectra are presented for a series of InAsxP1-x/InP strained layer multiple quantum well structures (0 < x = 0.35) grown by low pressure metal organic vapor phase epitaxy (LP-MOVPE) using trimethylindium (TMIn), tertiarybutylarsine (TBAs) and phosphine as precursors. The well widths and compositions in these structures are determined from high resolution x-ray diffraction and transmission electron microscopy. The absorption spectra are then analyzed by fitting the excitonic peak energy position with transition energies determined from a solution to the Schrödinger equation. We used the envelope function formalism with the Kane bands as the basis wavefunctions and included corrections for non parabolicity. From these fits and elasticity theory, both the bandgap of unstrained InAsxP1-x and the band offsets of these heterostructures are deduced self-consistently. The conduction band offsets are found between 72% and 75% of the total strained bandgap differences.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yablanovitch, E. and Kane, E.O., IEEE J. Lightwave Technol. LT–6, 1292 (1989).Google Scholar
2 Tran, C.A., Graham, J.T., Masut, R.A. and Brebner, J.L., MRS vol. 326, 115 (1994).Google Scholar
3 Storch, D.R., Schneider, R.P. Jr., and Wessels, B.W., J. Appl. Phys. 72, 3041 (1992).Google Scholar
4 Osboum, G.C., J. Vac. Sci. Technol., A3, 826 (1985); L.F. Palmateer, P.J. Tasker, T. Itoh, A.S. Brown, G.W. Wicks and L.F. Eastman, Electron. Lett. 23, 53 (1987).Google Scholar
5 Thijs, P.J.A., Dongen, T.v., Tiemeijer, L.F. and Binsma, J.J.M., J. Lightwave Technol. 12, 28 (1994).Google Scholar
6 Tran, C.A., Graham, J.T., Brebner, J.L., Masut, R.A., J. Electron. Mater. (in press).Google Scholar
7 Hwang, S.J., Shan, W., Song, J.J., Hou, H.Q. and Tu, C.W., J. Appl. Phys. 72, 1645 (1992).Google Scholar
8 Bensaada, A., Graham, J.T., Brebner, J.L., Chennouf, A., Cochrane, R.W., Leonelli, R. and Masut, R.A., Appl. Phys. Lett. 64, 273 (1994).Google Scholar
9 Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures, (Éditions de Physique, Les Ulis, 1988).Google Scholar
10 Pikus, G.E. and Bir, G.L., Sov. Phys. Solid State 1, 136 (1959); 1, 1502 (1960).Google Scholar
11 Mailhiot, Christian and Smith, Darryl L., Critical Reviews in Solid State and Materials Sciences 16, 131 (1990) and references therein.Google Scholar
12 Bensaada, A., Chennouf, A., Cochrane, R.W., Graham, J.T., Leonelli, R. and Masut, R.A., J. Appl. Phys. 75, 3024 (1994).Google Scholar
13 Fewster, P.F., Philips J. of Research 45, 620 (1984).Google Scholar
14 Beaudoin, M., Meunier, M., Muschik, T., Schwarz, R., Arsenault, C.J., Beaulieu, M. et Grimal, O., Can. J. Phys. 70, 824 (1992).Google Scholar
15 Kane, E.O., J. Phys. Chem. Sol. 1, 249 (1957).Google Scholar
16 Leonelli, R., Tran, C.A., Brebner, J.L., Graham, J.T., Tabti, R., Masut, R.A. and Charbonneau, S., Phys. Rev. B. 48, 11135 (1993).Google Scholar
17 Juillaguet, Sandrine, Effets d'interruptions de croissance sur les propriétés optiques des puits quantiques ultra minces GaInAs/InP, Thése de Doctorat (Université de Montpellier II, France).Google Scholar