Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T03:34:30.165Z Has data issue: false hasContentIssue false

Band Gap Shift of GaN under Uniaxial Strain Compression

Published online by Cambridge University Press:  21 March 2011

H. Y. Peng
Affiliation:
Institute for Shock Physics and Department of Physics, Washington State University, Pullman, WA 99164-2816, U.S.A.
M. D. McCluskey
Affiliation:
Institute for Shock Physics and Department of Physics, Washington State University, Pullman, WA 99164-2816, U.S.A.
Y. M. Gupta
Affiliation:
Institute for Shock Physics and Department of Physics, Washington State University, Pullman, WA 99164-2816, U.S.A.
M. Kneissl
Affiliation:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304, U.S.A.
N. M. Johnson
Affiliation:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304, U.S.A.
Get access

Abstract

The band-gap shift of GaN:Mg epilayers on (0001)-oriented sapphire was studied as a function of uniaxial strain compression along the c-axis using time-resolved, optical absorption measurements in shock wave experiments. For longitudinal stresses ranging from 4 to 14 GPa, the band gap shift is approximately 0.026 eV/GPa. Combining this result with the known behavior of wurtzite GaN under hydrostatic pressure and biaxial stress, a new set of deformation potentials has been estimated: acz-D1 = -10.2 eV, act-D2 = -7.9 eV, D3 = 1.33 eV and D4 = -0.74 eV. A slow band gap shift is also observed following the immediate band gap increase upon impact. This phenomenon can be explained by a time-dependent screening of the piezoelectric field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kisielowski, C., Krüger, J., Ruvimov, S., Suski, T., Ager, J. W. III, Jones, E., Liliental, Z. Weber, Rubin, M., and Weber, E. R., Phys. Rev. B 54, 17745 (1996).Google Scholar
2. Bykhovski, A., Gelmont, B., Shur, M., and Khan, A., J. Appl. Phys. 77, 1616 (1995).10.1063/1.358916Google Scholar
3. Perlin, P., Mattos, L., Shapiro, N. A., Kruger, J., Wong, W. S., Sands, T., Cheung, N. W. and Weber, E. R., J. Appl. Phys. 85, 2385 (1999).10.1063/1.369554Google Scholar
4. Gil, B., Briot, O., and Aulombard, R. L., Phys. Rev. B 52, R17028 (1995).Google Scholar
5. Shan, W., Hauenstein, R. J., Fischer, A. J., Song, J. J., Perry, W. G., Bremser, M. D., Davis, R. F., and Goldenberg, B., Phys. Rev. B 54, 13460 (1996).10.1103/PhysRevB.54.13460Google Scholar
6. Chichibu, S., Azuhata, T., Sota, T., Amano, H. and Akasaki, I., Appl. Phys. Lett. 70, 2085 (1997).10.1063/1.118958Google Scholar
7. Kumagai, M., Chuang, S. L. and Ando, H., Phys. Rev. B 57, 15303 (1998).10.1103/PhysRevB.57.15303Google Scholar
8. Winey, J. M. and Gupta, Y. M., J. Phys. Chem. A 101, 9333 (1997).10.1021/jp971833nGoogle Scholar
9. Polian, A., Grimsditch, M., and Grzegory, I., J. Appl. Phys. 79, 3343 (1996).Google Scholar
10. Suzuki, M. and Uenoyama, T., Jpn. J. Appl. Phys. 35, 1420 (1996).10.1143/JJAP.35.1420Google Scholar
11. Suzuki, M. and Uenoyama, T., J. Appl. Phys. 80, 6868 (1996).Google Scholar